Evaluate
\sqrt{3}-\frac{1}{4}\approx 1.482050808
Share
Copied to clipboard
\left(\frac{\sqrt{2}}{2}\right)^{2}-\frac{1}{\sin(30)}+\frac{1}{\tan(30)}+\left(\cos(30)\right)^{2}+\left(\sin(45)\right)^{2}
Get the value of \cos(45) from trigonometric values table.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{1}{\sin(30)}+\frac{1}{\tan(30)}+\left(\cos(30)\right)^{2}+\left(\sin(45)\right)^{2}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{1}{\frac{1}{2}}+\frac{1}{\tan(30)}+\left(\cos(30)\right)^{2}+\left(\sin(45)\right)^{2}
Get the value of \sin(30) from trigonometric values table.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-1\times 2+\frac{1}{\tan(30)}+\left(\cos(30)\right)^{2}+\left(\sin(45)\right)^{2}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-2+\frac{1}{\tan(30)}+\left(\cos(30)\right)^{2}+\left(\sin(45)\right)^{2}
Multiply 1 and 2 to get 2.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-2+\frac{1}{\frac{\sqrt{3}}{3}}+\left(\cos(30)\right)^{2}+\left(\sin(45)\right)^{2}
Get the value of \tan(30) from trigonometric values table.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-2+\frac{3}{\sqrt{3}}+\left(\cos(30)\right)^{2}+\left(\sin(45)\right)^{2}
Divide 1 by \frac{\sqrt{3}}{3} by multiplying 1 by the reciprocal of \frac{\sqrt{3}}{3}.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-2+\frac{3\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\left(\cos(30)\right)^{2}+\left(\sin(45)\right)^{2}
Rationalize the denominator of \frac{3}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-2+\frac{3\sqrt{3}}{3}+\left(\cos(30)\right)^{2}+\left(\sin(45)\right)^{2}
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-2+\sqrt{3}+\left(\cos(30)\right)^{2}+\left(\sin(45)\right)^{2}
Cancel out 3 and 3.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-2+\sqrt{3}+\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\sin(45)\right)^{2}
Get the value of \cos(30) from trigonometric values table.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-2+\sqrt{3}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\left(\sin(45)\right)^{2}
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-2+\sqrt{3}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\left(\frac{\sqrt{2}}{2}\right)^{2}
Get the value of \sin(45) from trigonometric values table.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-2+\sqrt{3}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
2\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-2+\sqrt{3}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}
Combine \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} and \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} to get 2\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}.
2\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(-2+\sqrt{3}\right)\times 2^{2}}{2^{2}}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2+\sqrt{3} times \frac{2^{2}}{2^{2}}.
2\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(-2+\sqrt{3}\right)\times 2^{2}+\left(\sqrt{3}\right)^{2}}{2^{2}}
Since \frac{\left(-2+\sqrt{3}\right)\times 2^{2}}{2^{2}} and \frac{\left(\sqrt{3}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
2\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-2+\frac{\sqrt{3}\times 2^{2}}{2^{2}}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{3} times \frac{2^{2}}{2^{2}}.
2\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-2+\frac{\sqrt{3}\times 2^{2}+\left(\sqrt{3}\right)^{2}}{2^{2}}
Since \frac{\sqrt{3}\times 2^{2}}{2^{2}} and \frac{\left(\sqrt{3}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
2\times \frac{2}{2^{2}}-2+\sqrt{3}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}
The square of \sqrt{2} is 2.
2\times \frac{2}{4}-2+\sqrt{3}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}
Calculate 2 to the power of 2 and get 4.
2\times \frac{1}{2}-2+\sqrt{3}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
1-2+\sqrt{3}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}
Multiply 2 and \frac{1}{2} to get 1.
-1+\sqrt{3}+\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}
Subtract 2 from 1 to get -1.
-1+\sqrt{3}+\frac{3}{2^{2}}
The square of \sqrt{3} is 3.
-1+\sqrt{3}+\frac{3}{4}
Calculate 2 to the power of 2 and get 4.
-\frac{1}{4}+\sqrt{3}
Add -1 and \frac{3}{4} to get -\frac{1}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}