Evaluate
\frac{2\beta }{5}+1
Expand
\frac{2\beta }{5}+1
Share
Copied to clipboard
\beta \times \frac{2}{5}+\frac{\left(2\times 35+2\right)\times 25}{35\left(1\times 25+11\right)}-\frac{3}{7}
Divide \frac{2\times 35+2}{35} by \frac{1\times 25+11}{25} by multiplying \frac{2\times 35+2}{35} by the reciprocal of \frac{1\times 25+11}{25}.
\beta \times \frac{2}{5}+\frac{5\left(2+2\times 35\right)}{7\left(11+25\right)}-\frac{3}{7}
Cancel out 5 in both numerator and denominator.
\beta \times \frac{2}{5}+\frac{5\left(2+70\right)}{7\left(11+25\right)}-\frac{3}{7}
Multiply 2 and 35 to get 70.
\beta \times \frac{2}{5}+\frac{5\times 72}{7\left(11+25\right)}-\frac{3}{7}
Add 2 and 70 to get 72.
\beta \times \frac{2}{5}+\frac{360}{7\left(11+25\right)}-\frac{3}{7}
Multiply 5 and 72 to get 360.
\beta \times \frac{2}{5}+\frac{360}{7\times 36}-\frac{3}{7}
Add 11 and 25 to get 36.
\beta \times \frac{2}{5}+\frac{360}{252}-\frac{3}{7}
Multiply 7 and 36 to get 252.
\beta \times \frac{2}{5}+\frac{10}{7}-\frac{3}{7}
Reduce the fraction \frac{360}{252} to lowest terms by extracting and canceling out 36.
\beta \times \frac{2}{5}+\frac{10-3}{7}
Since \frac{10}{7} and \frac{3}{7} have the same denominator, subtract them by subtracting their numerators.
\beta \times \frac{2}{5}+\frac{7}{7}
Subtract 3 from 10 to get 7.
\beta \times \frac{2}{5}+1
Divide 7 by 7 to get 1.
\beta \times \frac{2}{5}+\frac{\left(2\times 35+2\right)\times 25}{35\left(1\times 25+11\right)}-\frac{3}{7}
Divide \frac{2\times 35+2}{35} by \frac{1\times 25+11}{25} by multiplying \frac{2\times 35+2}{35} by the reciprocal of \frac{1\times 25+11}{25}.
\beta \times \frac{2}{5}+\frac{5\left(2+2\times 35\right)}{7\left(11+25\right)}-\frac{3}{7}
Cancel out 5 in both numerator and denominator.
\beta \times \frac{2}{5}+\frac{5\left(2+70\right)}{7\left(11+25\right)}-\frac{3}{7}
Multiply 2 and 35 to get 70.
\beta \times \frac{2}{5}+\frac{5\times 72}{7\left(11+25\right)}-\frac{3}{7}
Add 2 and 70 to get 72.
\beta \times \frac{2}{5}+\frac{360}{7\left(11+25\right)}-\frac{3}{7}
Multiply 5 and 72 to get 360.
\beta \times \frac{2}{5}+\frac{360}{7\times 36}-\frac{3}{7}
Add 11 and 25 to get 36.
\beta \times \frac{2}{5}+\frac{360}{252}-\frac{3}{7}
Multiply 7 and 36 to get 252.
\beta \times \frac{2}{5}+\frac{10}{7}-\frac{3}{7}
Reduce the fraction \frac{360}{252} to lowest terms by extracting and canceling out 36.
\beta \times \frac{2}{5}+\frac{10-3}{7}
Since \frac{10}{7} and \frac{3}{7} have the same denominator, subtract them by subtracting their numerators.
\beta \times \frac{2}{5}+\frac{7}{7}
Subtract 3 from 10 to get 7.
\beta \times \frac{2}{5}+1
Divide 7 by 7 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}