Solve for α
\alpha =-\frac{x+1}{x^{2}}
x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{1-4\alpha }-1}{2\alpha }\text{; }x=-\frac{\sqrt{1-4\alpha }+1}{2\alpha }\text{, }&\alpha \neq 0\\x=-1\text{, }&\alpha =0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{1-4\alpha }-1}{2\alpha }\text{; }x=-\frac{\sqrt{1-4\alpha }+1}{2\alpha }\text{, }&\alpha \neq 0\text{ and }\alpha \leq \frac{1}{4}\\x=-1\text{, }&\alpha =0\end{matrix}\right.
Graph
Share
Copied to clipboard
\alpha x^{2}+1=-x
Subtract x from both sides. Anything subtracted from zero gives its negation.
\alpha x^{2}=-x-1
Subtract 1 from both sides.
x^{2}\alpha =-x-1
The equation is in standard form.
\frac{x^{2}\alpha }{x^{2}}=\frac{-x-1}{x^{2}}
Divide both sides by x^{2}.
\alpha =\frac{-x-1}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
\alpha =-\frac{x+1}{x^{2}}
Divide -x-1 by x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}