Solve for α (complex solution)
\alpha \in \mathrm{C}
Solve for β (complex solution)
\beta \in \mathrm{C}
Solve for α
\alpha \in \mathrm{R}
Solve for β
\beta \in \mathrm{R}
Share
Copied to clipboard
\alpha ^{4}+\beta ^{4}=\left(\alpha ^{2}\right)^{2}+2\alpha ^{2}\beta ^{2}+\left(\beta ^{2}\right)^{2}-2\left(\alpha \beta \right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\alpha ^{2}+\beta ^{2}\right)^{2}.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\left(\beta ^{2}\right)^{2}-2\left(\alpha \beta \right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\beta ^{4}-2\left(\alpha \beta \right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\beta ^{4}-2\alpha ^{2}\beta ^{2}
Expand \left(\alpha \beta \right)^{2}.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+\beta ^{4}
Combine 2\alpha ^{2}\beta ^{2} and -2\alpha ^{2}\beta ^{2} to get 0.
\alpha ^{4}+\beta ^{4}-\alpha ^{4}=\beta ^{4}
Subtract \alpha ^{4} from both sides.
\beta ^{4}=\beta ^{4}
Combine \alpha ^{4} and -\alpha ^{4} to get 0.
\text{true}
Reorder the terms.
\alpha \in \mathrm{C}
This is true for any \alpha .
\alpha ^{4}+\beta ^{4}=\left(\alpha ^{2}\right)^{2}+2\alpha ^{2}\beta ^{2}+\left(\beta ^{2}\right)^{2}-2\left(\alpha \beta \right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\alpha ^{2}+\beta ^{2}\right)^{2}.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\left(\beta ^{2}\right)^{2}-2\left(\alpha \beta \right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\beta ^{4}-2\left(\alpha \beta \right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\beta ^{4}-2\alpha ^{2}\beta ^{2}
Expand \left(\alpha \beta \right)^{2}.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+\beta ^{4}
Combine 2\alpha ^{2}\beta ^{2} and -2\alpha ^{2}\beta ^{2} to get 0.
\alpha ^{4}+\beta ^{4}-\beta ^{4}=\alpha ^{4}
Subtract \beta ^{4} from both sides.
\alpha ^{4}=\alpha ^{4}
Combine \beta ^{4} and -\beta ^{4} to get 0.
\text{true}
Reorder the terms.
\beta \in \mathrm{C}
This is true for any \beta .
\alpha ^{4}+\beta ^{4}=\left(\alpha ^{2}\right)^{2}+2\alpha ^{2}\beta ^{2}+\left(\beta ^{2}\right)^{2}-2\left(\alpha \beta \right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\alpha ^{2}+\beta ^{2}\right)^{2}.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\left(\beta ^{2}\right)^{2}-2\left(\alpha \beta \right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\beta ^{4}-2\left(\alpha \beta \right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\beta ^{4}-2\alpha ^{2}\beta ^{2}
Expand \left(\alpha \beta \right)^{2}.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+\beta ^{4}
Combine 2\alpha ^{2}\beta ^{2} and -2\alpha ^{2}\beta ^{2} to get 0.
\alpha ^{4}+\beta ^{4}-\alpha ^{4}=\beta ^{4}
Subtract \alpha ^{4} from both sides.
\beta ^{4}=\beta ^{4}
Combine \alpha ^{4} and -\alpha ^{4} to get 0.
\text{true}
Reorder the terms.
\alpha \in \mathrm{R}
This is true for any \alpha .
\alpha ^{4}+\beta ^{4}=\left(\alpha ^{2}\right)^{2}+2\alpha ^{2}\beta ^{2}+\left(\beta ^{2}\right)^{2}-2\left(\alpha \beta \right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\alpha ^{2}+\beta ^{2}\right)^{2}.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\left(\beta ^{2}\right)^{2}-2\left(\alpha \beta \right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\beta ^{4}-2\left(\alpha \beta \right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\beta ^{4}-2\alpha ^{2}\beta ^{2}
Expand \left(\alpha \beta \right)^{2}.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+\beta ^{4}
Combine 2\alpha ^{2}\beta ^{2} and -2\alpha ^{2}\beta ^{2} to get 0.
\alpha ^{4}+\beta ^{4}-\beta ^{4}=\alpha ^{4}
Subtract \beta ^{4} from both sides.
\alpha ^{4}=\alpha ^{4}
Combine \beta ^{4} and -\beta ^{4} to get 0.
\text{true}
Reorder the terms.
\beta \in \mathrm{R}
This is true for any \beta .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}