Skip to main content
Solve for α (complex solution)
Tick mark Image
Solve for β (complex solution)
Tick mark Image
Solve for α
Tick mark Image
Solve for β
Tick mark Image

Similar Problems from Web Search

Share

\alpha ^{4}+\beta ^{4}=\left(\alpha ^{2}\right)^{2}+2\alpha ^{2}\beta ^{2}+\left(\beta ^{2}\right)^{2}-2\left(\alpha \beta \right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\alpha ^{2}+\beta ^{2}\right)^{2}.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\left(\beta ^{2}\right)^{2}-2\left(\alpha \beta \right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\beta ^{4}-2\left(\alpha \beta \right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\beta ^{4}-2\alpha ^{2}\beta ^{2}
Expand \left(\alpha \beta \right)^{2}.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+\beta ^{4}
Combine 2\alpha ^{2}\beta ^{2} and -2\alpha ^{2}\beta ^{2} to get 0.
\alpha ^{4}+\beta ^{4}-\alpha ^{4}=\beta ^{4}
Subtract \alpha ^{4} from both sides.
\beta ^{4}=\beta ^{4}
Combine \alpha ^{4} and -\alpha ^{4} to get 0.
\text{true}
Reorder the terms.
\alpha \in \mathrm{C}
This is true for any \alpha .
\alpha ^{4}+\beta ^{4}=\left(\alpha ^{2}\right)^{2}+2\alpha ^{2}\beta ^{2}+\left(\beta ^{2}\right)^{2}-2\left(\alpha \beta \right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\alpha ^{2}+\beta ^{2}\right)^{2}.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\left(\beta ^{2}\right)^{2}-2\left(\alpha \beta \right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\beta ^{4}-2\left(\alpha \beta \right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\beta ^{4}-2\alpha ^{2}\beta ^{2}
Expand \left(\alpha \beta \right)^{2}.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+\beta ^{4}
Combine 2\alpha ^{2}\beta ^{2} and -2\alpha ^{2}\beta ^{2} to get 0.
\alpha ^{4}+\beta ^{4}-\beta ^{4}=\alpha ^{4}
Subtract \beta ^{4} from both sides.
\alpha ^{4}=\alpha ^{4}
Combine \beta ^{4} and -\beta ^{4} to get 0.
\text{true}
Reorder the terms.
\beta \in \mathrm{C}
This is true for any \beta .
\alpha ^{4}+\beta ^{4}=\left(\alpha ^{2}\right)^{2}+2\alpha ^{2}\beta ^{2}+\left(\beta ^{2}\right)^{2}-2\left(\alpha \beta \right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\alpha ^{2}+\beta ^{2}\right)^{2}.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\left(\beta ^{2}\right)^{2}-2\left(\alpha \beta \right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\beta ^{4}-2\left(\alpha \beta \right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\beta ^{4}-2\alpha ^{2}\beta ^{2}
Expand \left(\alpha \beta \right)^{2}.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+\beta ^{4}
Combine 2\alpha ^{2}\beta ^{2} and -2\alpha ^{2}\beta ^{2} to get 0.
\alpha ^{4}+\beta ^{4}-\alpha ^{4}=\beta ^{4}
Subtract \alpha ^{4} from both sides.
\beta ^{4}=\beta ^{4}
Combine \alpha ^{4} and -\alpha ^{4} to get 0.
\text{true}
Reorder the terms.
\alpha \in \mathrm{R}
This is true for any \alpha .
\alpha ^{4}+\beta ^{4}=\left(\alpha ^{2}\right)^{2}+2\alpha ^{2}\beta ^{2}+\left(\beta ^{2}\right)^{2}-2\left(\alpha \beta \right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\alpha ^{2}+\beta ^{2}\right)^{2}.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\left(\beta ^{2}\right)^{2}-2\left(\alpha \beta \right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\beta ^{4}-2\left(\alpha \beta \right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+2\alpha ^{2}\beta ^{2}+\beta ^{4}-2\alpha ^{2}\beta ^{2}
Expand \left(\alpha \beta \right)^{2}.
\alpha ^{4}+\beta ^{4}=\alpha ^{4}+\beta ^{4}
Combine 2\alpha ^{2}\beta ^{2} and -2\alpha ^{2}\beta ^{2} to get 0.
\alpha ^{4}+\beta ^{4}-\beta ^{4}=\alpha ^{4}
Subtract \beta ^{4} from both sides.
\alpha ^{4}=\alpha ^{4}
Combine \beta ^{4} and -\beta ^{4} to get 0.
\text{true}
Reorder the terms.
\beta \in \mathrm{R}
This is true for any \beta .