Solve for α
\alpha =\frac{\sqrt{5}}{5}\approx 0.447213595
\alpha =-\frac{\sqrt{5}}{5}\approx -0.447213595
Share
Copied to clipboard
\alpha ^{2}=\frac{5}{25}
Expand \frac{0.5}{2.5} by multiplying both numerator and the denominator by 10.
\alpha ^{2}=\frac{1}{5}
Reduce the fraction \frac{5}{25} to lowest terms by extracting and canceling out 5.
\alpha =\frac{\sqrt{5}}{5} \alpha =-\frac{\sqrt{5}}{5}
Take the square root of both sides of the equation.
\alpha ^{2}=\frac{5}{25}
Expand \frac{0.5}{2.5} by multiplying both numerator and the denominator by 10.
\alpha ^{2}=\frac{1}{5}
Reduce the fraction \frac{5}{25} to lowest terms by extracting and canceling out 5.
\alpha ^{2}-\frac{1}{5}=0
Subtract \frac{1}{5} from both sides.
\alpha =\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{5}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{1}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\alpha =\frac{0±\sqrt{-4\left(-\frac{1}{5}\right)}}{2}
Square 0.
\alpha =\frac{0±\sqrt{\frac{4}{5}}}{2}
Multiply -4 times -\frac{1}{5}.
\alpha =\frac{0±\frac{2\sqrt{5}}{5}}{2}
Take the square root of \frac{4}{5}.
\alpha =\frac{\sqrt{5}}{5}
Now solve the equation \alpha =\frac{0±\frac{2\sqrt{5}}{5}}{2} when ± is plus.
\alpha =-\frac{\sqrt{5}}{5}
Now solve the equation \alpha =\frac{0±\frac{2\sqrt{5}}{5}}{2} when ± is minus.
\alpha =\frac{\sqrt{5}}{5} \alpha =-\frac{\sqrt{5}}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}