Solve for α
\alpha =-11,5
Assign α
\alpha ≔-11,5
Share
Copied to clipboard
\alpha =\left(-\left(\frac{9\times 2}{5}-\frac{\frac{9}{3}}{3}\right)\right)\times 2,5-5
Express 9\times \frac{2}{5} as a single fraction.
\alpha =\left(-\left(\frac{18}{5}-\frac{\frac{9}{3}}{3}\right)\right)\times 2,5-5
Multiply 9 and 2 to get 18.
\alpha =\left(-\left(\frac{18}{5}-\frac{3}{3}\right)\right)\times 2,5-5
Divide 9 by 3 to get 3.
\alpha =\left(-\left(\frac{18}{5}-1\right)\right)\times 2,5-5
Divide 3 by 3 to get 1.
\alpha =\left(-\left(\frac{18}{5}-\frac{5}{5}\right)\right)\times 2,5-5
Convert 1 to fraction \frac{5}{5}.
\alpha =\left(-\frac{18-5}{5}\right)\times 2,5-5
Since \frac{18}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
\alpha =-\frac{13}{5}\times 2,5-5
Subtract 5 from 18 to get 13.
\alpha =-\frac{13}{5}\times \frac{5}{2}-5
Convert decimal number 2,5 to fraction \frac{25}{10}. Reduce the fraction \frac{25}{10} to lowest terms by extracting and canceling out 5.
\alpha =\frac{-13\times 5}{5\times 2}-5
Multiply -\frac{13}{5} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\alpha =\frac{-13}{2}-5
Cancel out 5 in both numerator and denominator.
\alpha =-\frac{13}{2}-5
Fraction \frac{-13}{2} can be rewritten as -\frac{13}{2} by extracting the negative sign.
\alpha =-\frac{13}{2}-\frac{10}{2}
Convert 5 to fraction \frac{10}{2}.
\alpha =\frac{-13-10}{2}
Since -\frac{13}{2} and \frac{10}{2} have the same denominator, subtract them by subtracting their numerators.
\alpha =-\frac{23}{2}
Subtract 10 from -13 to get -23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}