Solve for b
\left\{\begin{matrix}b=\frac{2x+y}{2\alpha }\text{, }&x\neq -\frac{y}{2}\text{ and }\alpha \neq 0\\b\neq 0\text{, }&x=-\frac{y}{2}\text{ and }\alpha =0\end{matrix}\right.
Solve for x
x=b\alpha -\frac{y}{2}
b\neq 0
Graph
Share
Copied to clipboard
\alpha \times 2b=2x+y
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2b, the least common multiple of b,2b.
2b\alpha =2x+y
Reorder the terms.
2\alpha b=2x+y
The equation is in standard form.
\frac{2\alpha b}{2\alpha }=\frac{2x+y}{2\alpha }
Divide both sides by 2\alpha .
b=\frac{2x+y}{2\alpha }
Dividing by 2\alpha undoes the multiplication by 2\alpha .
b=\frac{2x+y}{2\alpha }\text{, }b\neq 0
Variable b cannot be equal to 0.
\alpha \times 2b=2x+y
Multiply both sides of the equation by 2b, the least common multiple of b,2b.
2x+y=\alpha \times 2b
Swap sides so that all variable terms are on the left hand side.
2x=\alpha \times 2b-y
Subtract y from both sides.
2x=2b\alpha -y
The equation is in standard form.
\frac{2x}{2}=\frac{2b\alpha -y}{2}
Divide both sides by 2.
x=\frac{2b\alpha -y}{2}
Dividing by 2 undoes the multiplication by 2.
x=b\alpha -\frac{y}{2}
Divide 2\alpha b-y by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}