Solve for P_B
P_{B}=P_{r}\left(\alpha +1\right)
P_{r}\neq 0
Solve for P_r
\left\{\begin{matrix}P_{r}=\frac{P_{B}}{\alpha +1}\text{, }&P_{B}\neq 0\text{ and }\alpha \neq -1\\P_{r}\neq 0\text{, }&P_{B}=0\text{ and }\alpha =-1\end{matrix}\right.
Share
Copied to clipboard
\alpha P_{r}=P_{B}-P_{r}
Multiply both sides of the equation by P_{r}.
P_{B}-P_{r}=\alpha P_{r}
Swap sides so that all variable terms are on the left hand side.
P_{B}=\alpha P_{r}+P_{r}
Add P_{r} to both sides.
\alpha P_{r}=P_{B}-P_{r}
Variable P_{r} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by P_{r}.
\alpha P_{r}+P_{r}=P_{B}
Add P_{r} to both sides.
\left(\alpha +1\right)P_{r}=P_{B}
Combine all terms containing P_{r}.
\frac{\left(\alpha +1\right)P_{r}}{\alpha +1}=\frac{P_{B}}{\alpha +1}
Divide both sides by \alpha +1.
P_{r}=\frac{P_{B}}{\alpha +1}
Dividing by \alpha +1 undoes the multiplication by \alpha +1.
P_{r}=\frac{P_{B}}{\alpha +1}\text{, }P_{r}\neq 0
Variable P_{r} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}