Solve for v (complex solution)
\left\{\begin{matrix}v=\frac{\alpha +\beta +\gamma }{\alpha \beta \gamma }\text{, }&\gamma \neq 0\text{ and }\beta \neq 0\text{ and }\alpha \neq 0\\v\in \mathrm{C}\text{, }&\left(\alpha =-\gamma \text{ and }\beta =0\right)\text{ or }\left(\alpha =-\beta \text{ and }\gamma =0\right)\text{ or }\left(\alpha =0\text{ and }\beta =-\gamma \text{ and }\gamma \neq 0\right)\end{matrix}\right.
Solve for α (complex solution)
\left\{\begin{matrix}\alpha =-\frac{\beta +\gamma }{1-v\beta \gamma }\text{, }&\gamma =0\text{ or }v=0\text{ or }\beta \neq \frac{1}{v\gamma }\\\alpha \in \mathrm{C}\text{, }&\left(\gamma =-iv^{-\frac{1}{2}}\text{ and }\beta =iv^{-\frac{1}{2}}\text{ and }v\neq 0\right)\text{ or }\left(\gamma =iv^{-\frac{1}{2}}\text{ and }\beta =-iv^{-\frac{1}{2}}\text{ and }v\neq 0\right)\end{matrix}\right.
Solve for v
\left\{\begin{matrix}v=\frac{\alpha +\beta +\gamma }{\alpha \beta \gamma }\text{, }&\gamma \neq 0\text{ and }\beta \neq 0\text{ and }\alpha \neq 0\\v\in \mathrm{R}\text{, }&\left(\alpha =-\gamma \text{ and }\beta =0\right)\text{ or }\left(\alpha =-\beta \text{ and }\gamma =0\right)\text{ or }\left(\alpha =0\text{ and }\beta =-\gamma \text{ and }\gamma \neq 0\right)\end{matrix}\right.
Solve for α
\left\{\begin{matrix}\alpha =-\frac{\beta +\gamma }{1-v\beta \gamma }\text{, }&\gamma =0\text{ or }v=0\text{ or }\beta \neq \frac{1}{v\gamma }\\\alpha \in \mathrm{R}\text{, }&\beta =-\gamma \text{ and }v=-\frac{1}{\gamma ^{2}}\text{ and }\gamma \neq 0\end{matrix}\right.
Share
Copied to clipboard
v\alpha \beta \gamma =\alpha +\beta +\gamma
Swap sides so that all variable terms are on the left hand side.
\alpha \beta \gamma v=\alpha +\beta +\gamma
The equation is in standard form.
\frac{\alpha \beta \gamma v}{\alpha \beta \gamma }=\frac{\alpha +\beta +\gamma }{\alpha \beta \gamma }
Divide both sides by \alpha \beta \gamma .
v=\frac{\alpha +\beta +\gamma }{\alpha \beta \gamma }
Dividing by \alpha \beta \gamma undoes the multiplication by \alpha \beta \gamma .
\alpha +\beta +\gamma -v\alpha \beta \gamma =0
Subtract v\alpha \beta \gamma from both sides.
\alpha +\gamma -v\alpha \beta \gamma =-\beta
Subtract \beta from both sides. Anything subtracted from zero gives its negation.
\alpha -v\alpha \beta \gamma =-\beta -\gamma
Subtract \gamma from both sides.
\left(1-v\beta \gamma \right)\alpha =-\beta -\gamma
Combine all terms containing \alpha .
\frac{\left(1-v\beta \gamma \right)\alpha }{1-v\beta \gamma }=\frac{-\beta -\gamma }{1-v\beta \gamma }
Divide both sides by 1-v\beta \gamma .
\alpha =\frac{-\beta -\gamma }{1-v\beta \gamma }
Dividing by 1-v\beta \gamma undoes the multiplication by 1-v\beta \gamma .
\alpha =-\frac{\beta +\gamma }{1-v\beta \gamma }
Divide -\beta -\gamma by 1-v\beta \gamma .
v\alpha \beta \gamma =\alpha +\beta +\gamma
Swap sides so that all variable terms are on the left hand side.
\alpha \beta \gamma v=\alpha +\beta +\gamma
The equation is in standard form.
\frac{\alpha \beta \gamma v}{\alpha \beta \gamma }=\frac{\alpha +\beta +\gamma }{\alpha \beta \gamma }
Divide both sides by \alpha \beta \gamma .
v=\frac{\alpha +\beta +\gamma }{\alpha \beta \gamma }
Dividing by \alpha \beta \gamma undoes the multiplication by \alpha \beta \gamma .
\alpha +\beta +\gamma -v\alpha \beta \gamma =0
Subtract v\alpha \beta \gamma from both sides.
\alpha +\gamma -v\alpha \beta \gamma =-\beta
Subtract \beta from both sides. Anything subtracted from zero gives its negation.
\alpha -v\alpha \beta \gamma =-\beta -\gamma
Subtract \gamma from both sides.
\left(1-v\beta \gamma \right)\alpha =-\beta -\gamma
Combine all terms containing \alpha .
\frac{\left(1-v\beta \gamma \right)\alpha }{1-v\beta \gamma }=\frac{-\beta -\gamma }{1-v\beta \gamma }
Divide both sides by 1-v\beta \gamma .
\alpha =\frac{-\beta -\gamma }{1-v\beta \gamma }
Dividing by 1-v\beta \gamma undoes the multiplication by 1-v\beta \gamma .
\alpha =-\frac{\beta +\gamma }{1-v\beta \gamma }
Divide -\beta -\gamma by 1-v\beta \gamma .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}