Solve for w
w=\left(\frac{1}{2}+\frac{1}{2}i\right)\Lambda
Solve for Λ
\Lambda =\left(1-i\right)w
Share
Copied to clipboard
\Lambda +iw-w=0
Subtract w from both sides.
\Lambda +\left(-1+i\right)w=0
Combine iw and -w to get \left(-1+i\right)w.
\left(-1+i\right)w=-\Lambda
Subtract \Lambda from both sides. Anything subtracted from zero gives its negation.
\frac{\left(-1+i\right)w}{-1+i}=-\frac{\Lambda }{-1+i}
Divide both sides by -1+i.
w=-\frac{\Lambda }{-1+i}
Dividing by -1+i undoes the multiplication by -1+i.
w=\left(\frac{1}{2}+\frac{1}{2}i\right)\Lambda
Divide -\Lambda by -1+i.
\Lambda =w-iw
Subtract iw from both sides.
\Lambda =\left(1-i\right)w
Combine w and -iw to get \left(1-i\right)w.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}