Solve for y (complex solution)
\left\{\begin{matrix}y=\frac{x}{4\Gamma }\text{, }&\Gamma \neq 0\\y\in \mathrm{C}\text{, }&x=0\text{ and }\Gamma =0\end{matrix}\right.
Solve for x
x=4y\Gamma
Solve for y
\left\{\begin{matrix}y=\frac{x}{4\Gamma }\text{, }&\Gamma \neq 0\\y\in \mathrm{R}\text{, }&x=0\text{ and }\Gamma =0\end{matrix}\right.
Graph
Share
Copied to clipboard
\Gamma y=\frac{x}{4}
The equation is in standard form.
\frac{\Gamma y}{\Gamma }=\frac{x}{4\Gamma }
Divide both sides by \Gamma .
y=\frac{x}{4\Gamma }
Dividing by \Gamma undoes the multiplication by \Gamma .
\frac{1}{4}x=\Gamma y
Swap sides so that all variable terms are on the left hand side.
\frac{1}{4}x=y\Gamma
The equation is in standard form.
\frac{\frac{1}{4}x}{\frac{1}{4}}=\frac{y\Gamma }{\frac{1}{4}}
Multiply both sides by 4.
x=\frac{y\Gamma }{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
x=4y\Gamma
Divide \Gamma y by \frac{1}{4} by multiplying \Gamma y by the reciprocal of \frac{1}{4}.
\Gamma y=\frac{x}{4}
The equation is in standard form.
\frac{\Gamma y}{\Gamma }=\frac{x}{4\Gamma }
Divide both sides by \Gamma .
y=\frac{x}{4\Gamma }
Dividing by \Gamma undoes the multiplication by \Gamma .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}