Solve for Γ
\Gamma =-\frac{13}{15}\approx -0.866666667
Assign Γ
\Gamma ≔-\frac{13}{15}
Share
Copied to clipboard
\Gamma =-\left(\frac{7}{15}-\frac{15}{15}\right)-\frac{3}{5}+1-\frac{5}{3}+\frac{3}{5}-\frac{11}{15}
Convert 1 to fraction \frac{15}{15}.
\Gamma =-\frac{7-15}{15}-\frac{3}{5}+1-\frac{5}{3}+\frac{3}{5}-\frac{11}{15}
Since \frac{7}{15} and \frac{15}{15} have the same denominator, subtract them by subtracting their numerators.
\Gamma =-\left(-\frac{8}{15}\right)-\frac{3}{5}+1-\frac{5}{3}+\frac{3}{5}-\frac{11}{15}
Subtract 15 from 7 to get -8.
\Gamma =\frac{8}{15}-\frac{3}{5}+1-\frac{5}{3}+\frac{3}{5}-\frac{11}{15}
The opposite of -\frac{8}{15} is \frac{8}{15}.
\Gamma =\frac{8}{15}-\frac{9}{15}+1-\frac{5}{3}+\frac{3}{5}-\frac{11}{15}
Least common multiple of 15 and 5 is 15. Convert \frac{8}{15} and \frac{3}{5} to fractions with denominator 15.
\Gamma =\frac{8-9}{15}+1-\frac{5}{3}+\frac{3}{5}-\frac{11}{15}
Since \frac{8}{15} and \frac{9}{15} have the same denominator, subtract them by subtracting their numerators.
\Gamma =-\frac{1}{15}+1-\frac{5}{3}+\frac{3}{5}-\frac{11}{15}
Subtract 9 from 8 to get -1.
\Gamma =-\frac{1}{15}+\frac{15}{15}-\frac{5}{3}+\frac{3}{5}-\frac{11}{15}
Convert 1 to fraction \frac{15}{15}.
\Gamma =\frac{-1+15}{15}-\frac{5}{3}+\frac{3}{5}-\frac{11}{15}
Since -\frac{1}{15} and \frac{15}{15} have the same denominator, add them by adding their numerators.
\Gamma =\frac{14}{15}-\frac{5}{3}+\frac{3}{5}-\frac{11}{15}
Add -1 and 15 to get 14.
\Gamma =\frac{14}{15}-\frac{25}{15}+\frac{3}{5}-\frac{11}{15}
Least common multiple of 15 and 3 is 15. Convert \frac{14}{15} and \frac{5}{3} to fractions with denominator 15.
\Gamma =\frac{14-25}{15}+\frac{3}{5}-\frac{11}{15}
Since \frac{14}{15} and \frac{25}{15} have the same denominator, subtract them by subtracting their numerators.
\Gamma =-\frac{11}{15}+\frac{3}{5}-\frac{11}{15}
Subtract 25 from 14 to get -11.
\Gamma =-\frac{11}{15}+\frac{9}{15}-\frac{11}{15}
Least common multiple of 15 and 5 is 15. Convert -\frac{11}{15} and \frac{3}{5} to fractions with denominator 15.
\Gamma =\frac{-11+9}{15}-\frac{11}{15}
Since -\frac{11}{15} and \frac{9}{15} have the same denominator, add them by adding their numerators.
\Gamma =-\frac{2}{15}-\frac{11}{15}
Add -11 and 9 to get -2.
\Gamma =\frac{-2-11}{15}
Since -\frac{2}{15} and \frac{11}{15} have the same denominator, subtract them by subtracting their numerators.
\Gamma =-\frac{13}{15}
Subtract 11 from -2 to get -13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}