Skip to main content
Solve for y
Tick mark Image
Solve for t
Tick mark Image
Graph

Similar Problems from Web Search

Share

\Delta y=64+48\Delta t+12\Delta ^{2}t^{2}+\Delta ^{3}t^{3}+3-\left(4^{3}+3\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(4+\Delta t\right)^{3}.
\Delta y=67+48\Delta t+12\Delta ^{2}t^{2}+\Delta ^{3}t^{3}-\left(4^{3}+3\right)
Add 64 and 3 to get 67.
\Delta y=67+48\Delta t+12\Delta ^{2}t^{2}+\Delta ^{3}t^{3}-\left(64+3\right)
Calculate 4 to the power of 3 and get 64.
\Delta y=67+48\Delta t+12\Delta ^{2}t^{2}+\Delta ^{3}t^{3}-67
Add 64 and 3 to get 67.
\Delta y=48\Delta t+12\Delta ^{2}t^{2}+\Delta ^{3}t^{3}
Subtract 67 from 67 to get 0.
\Delta y=t^{3}\Delta ^{3}+12t^{2}\Delta ^{2}+48t\Delta
The equation is in standard form.
\frac{\Delta y}{\Delta }=\frac{t\Delta \left(t^{2}\Delta ^{2}+12t\Delta +48\right)}{\Delta }
Divide both sides by \Delta .
y=\frac{t\Delta \left(t^{2}\Delta ^{2}+12t\Delta +48\right)}{\Delta }
Dividing by \Delta undoes the multiplication by \Delta .
y=t\left(t^{2}\Delta ^{2}+12t\Delta +48\right)
Divide \Delta t\left(48+12\Delta t+\Delta ^{2}t^{2}\right) by \Delta .