Solve for y
\left\{\begin{matrix}y=t\left(12t\Delta +\left(t\Delta \right)^{2}+48\right)\text{, }&\Delta \neq 0\\y\in \mathrm{R}\text{, }&\Delta =0\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=\frac{\sqrt[3]{y\Delta +64}-4}{\Delta }\text{, }&\Delta \neq 0\\t\in \mathrm{R}\text{, }&\Delta =0\end{matrix}\right.
Graph
Share
Copied to clipboard
\Delta y=64+48\Delta t+12\Delta ^{2}t^{2}+\Delta ^{3}t^{3}+3-\left(4^{3}+3\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(4+\Delta t\right)^{3}.
\Delta y=67+48\Delta t+12\Delta ^{2}t^{2}+\Delta ^{3}t^{3}-\left(4^{3}+3\right)
Add 64 and 3 to get 67.
\Delta y=67+48\Delta t+12\Delta ^{2}t^{2}+\Delta ^{3}t^{3}-\left(64+3\right)
Calculate 4 to the power of 3 and get 64.
\Delta y=67+48\Delta t+12\Delta ^{2}t^{2}+\Delta ^{3}t^{3}-67
Add 64 and 3 to get 67.
\Delta y=48\Delta t+12\Delta ^{2}t^{2}+\Delta ^{3}t^{3}
Subtract 67 from 67 to get 0.
\Delta y=t^{3}\Delta ^{3}+12t^{2}\Delta ^{2}+48t\Delta
The equation is in standard form.
\frac{\Delta y}{\Delta }=\frac{t\Delta \left(t^{2}\Delta ^{2}+12t\Delta +48\right)}{\Delta }
Divide both sides by \Delta .
y=\frac{t\Delta \left(t^{2}\Delta ^{2}+12t\Delta +48\right)}{\Delta }
Dividing by \Delta undoes the multiplication by \Delta .
y=t\left(t^{2}\Delta ^{2}+12t\Delta +48\right)
Divide \Delta t\left(48+12\Delta t+\Delta ^{2}t^{2}\right) by \Delta .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}