Solve for m
m=\frac{500000000000000y\Delta }{18625032763485161}
Solve for y
\left\{\begin{matrix}y=\frac{18625032763485161m}{500000000000000\Delta }\text{, }&\Delta \neq 0\\y\in \mathrm{R}\text{, }&m=0\text{ and }\Delta =0\end{matrix}\right.
Graph
Share
Copied to clipboard
\Delta y = 0.809784033195007 {(46.0 m)}
Evaluate trigonometric functions in the problem
\Delta y=37.250065526970322m
Multiply 0.809784033195007 and 46 to get 37.250065526970322.
37.250065526970322m=\Delta y
Swap sides so that all variable terms are on the left hand side.
37.250065526970322m=y\Delta
The equation is in standard form.
\frac{37.250065526970322m}{37.250065526970322}=\frac{y\Delta }{37.250065526970322}
Divide both sides of the equation by 37.250065526970322, which is the same as multiplying both sides by the reciprocal of the fraction.
m=\frac{y\Delta }{37.250065526970322}
Dividing by 37.250065526970322 undoes the multiplication by 37.250065526970322.
m=\frac{500000000000000y\Delta }{18625032763485161}
Divide \Delta y by 37.250065526970322 by multiplying \Delta y by the reciprocal of 37.250065526970322.
\Delta y = 0.809784033195007 {(46.0 m)}
Evaluate trigonometric functions in the problem
\Delta y=37.250065526970322m
Multiply 0.809784033195007 and 46 to get 37.250065526970322.
\Delta y=\frac{18625032763485161m}{500000000000000}
The equation is in standard form.
\frac{\Delta y}{\Delta }=\frac{18625032763485161m}{500000000000000\Delta }
Divide both sides by \Delta .
y=\frac{18625032763485161m}{500000000000000\Delta }
Dividing by \Delta undoes the multiplication by \Delta .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}