Solve for t
\left\{\begin{matrix}t=\frac{377\cos(\theta )}{3000000\Delta }\text{, }&\Delta \neq 0\\t\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\Delta =0\end{matrix}\right.
Solve for Δ
\left\{\begin{matrix}\Delta =\frac{377\cos(\theta )}{3000000t}\text{, }&t\neq 0\\\Delta \in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }t=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\Delta t=-\frac{7.54\times \frac{1}{1000}\left(0-2.5\times 10^{-2}\right)\cos(\theta )}{1.5}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\Delta t=-\frac{\frac{377}{50000}\left(0-2.5\times 10^{-2}\right)\cos(\theta )}{1.5}
Multiply 7.54 and \frac{1}{1000} to get \frac{377}{50000}.
\Delta t=-\frac{\frac{377}{50000}\left(0-2.5\times \frac{1}{100}\right)\cos(\theta )}{1.5}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\Delta t=-\frac{\frac{377}{50000}\left(-\frac{1}{40}\right)\cos(\theta )}{1.5}
Multiply 2.5 and \frac{1}{100} to get \frac{1}{40}.
\Delta t=-\frac{-\frac{377}{2000000}\cos(\theta )}{1.5}
Multiply \frac{377}{50000} and -\frac{1}{40} to get -\frac{377}{2000000}.
\Delta t=-\left(-\frac{377}{3000000}\right)\cos(\theta )
Divide -\frac{377}{2000000}\cos(\theta ) by 1.5 to get -\frac{377}{3000000}\cos(\theta ).
\Delta t=\frac{377}{3000000}\cos(\theta )
Multiply -1 and -\frac{377}{3000000} to get \frac{377}{3000000}.
\Delta t=\frac{377\cos(\theta )}{3000000}
The equation is in standard form.
\frac{\Delta t}{\Delta }=\frac{377\cos(\theta )}{3000000\Delta }
Divide both sides by \Delta .
t=\frac{377\cos(\theta )}{3000000\Delta }
Dividing by \Delta undoes the multiplication by \Delta .
\Delta t=-\frac{7.54\times \frac{1}{1000}\left(0-2.5\times 10^{-2}\right)\cos(\theta )}{1.5}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\Delta t=-\frac{\frac{377}{50000}\left(0-2.5\times 10^{-2}\right)\cos(\theta )}{1.5}
Multiply 7.54 and \frac{1}{1000} to get \frac{377}{50000}.
\Delta t=-\frac{\frac{377}{50000}\left(0-2.5\times \frac{1}{100}\right)\cos(\theta )}{1.5}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\Delta t=-\frac{\frac{377}{50000}\left(-\frac{1}{40}\right)\cos(\theta )}{1.5}
Multiply 2.5 and \frac{1}{100} to get \frac{1}{40}.
\Delta t=-\frac{-\frac{377}{2000000}\cos(\theta )}{1.5}
Multiply \frac{377}{50000} and -\frac{1}{40} to get -\frac{377}{2000000}.
\Delta t=-\left(-\frac{377}{3000000}\right)\cos(\theta )
Divide -\frac{377}{2000000}\cos(\theta ) by 1.5 to get -\frac{377}{3000000}\cos(\theta ).
\Delta t=\frac{377}{3000000}\cos(\theta )
Multiply -1 and -\frac{377}{3000000} to get \frac{377}{3000000}.
t\Delta =\frac{377\cos(\theta )}{3000000}
The equation is in standard form.
\frac{t\Delta }{t}=\frac{377\cos(\theta )}{3000000t}
Divide both sides by t.
\Delta =\frac{377\cos(\theta )}{3000000t}
Dividing by t undoes the multiplication by t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}