Solve for t
t=-x+\frac{9}{\Delta }
\Delta \neq 0
Solve for x
x=-t+\frac{9}{\Delta }
\Delta \neq 0
Graph
Share
Copied to clipboard
\Delta t=9-\Delta x
Subtract \Delta x from both sides.
\Delta t=9-x\Delta
The equation is in standard form.
\frac{\Delta t}{\Delta }=\frac{9-x\Delta }{\Delta }
Divide both sides by \Delta .
t=\frac{9-x\Delta }{\Delta }
Dividing by \Delta undoes the multiplication by \Delta .
t=-x+\frac{9}{\Delta }
Divide 9-\Delta x by \Delta .
\Delta x=9-\Delta t
Subtract \Delta t from both sides.
\Delta x=9-t\Delta
The equation is in standard form.
\frac{\Delta x}{\Delta }=\frac{9-t\Delta }{\Delta }
Divide both sides by \Delta .
x=\frac{9-t\Delta }{\Delta }
Dividing by \Delta undoes the multiplication by \Delta .
x=-t+\frac{9}{\Delta }
Divide 9-\Delta t by \Delta .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}