Solve for a
\left\{\begin{matrix}a=\frac{2s}{t^{2}}\text{, }&t\neq 0\\a\in \mathrm{R}\text{, }&\Delta =0\text{ or }\left(s=0\text{ and }t=0\right)\end{matrix}\right.
Solve for s
\left\{\begin{matrix}\\s=\frac{at^{2}}{2}\text{, }&\text{unconditionally}\\s\in \mathrm{R}\text{, }&\Delta =0\end{matrix}\right.
Quiz
Linear Equation
5 problems similar to:
\Delta s = \frac { 1 } { 2 } \cdot a \cdot \Delta t ^ { 2 }
Share
Copied to clipboard
\frac{1}{2}a\Delta t^{2}=\Delta s
Swap sides so that all variable terms are on the left hand side.
\frac{\Delta t^{2}}{2}a=s\Delta
The equation is in standard form.
\frac{2\times \frac{\Delta t^{2}}{2}a}{\Delta t^{2}}=\frac{2s\Delta }{\Delta t^{2}}
Divide both sides by \frac{1}{2}\Delta t^{2}.
a=\frac{2s\Delta }{\Delta t^{2}}
Dividing by \frac{1}{2}\Delta t^{2} undoes the multiplication by \frac{1}{2}\Delta t^{2}.
a=\frac{2s}{t^{2}}
Divide \Delta s by \frac{1}{2}\Delta t^{2}.
\Delta s=\frac{a\Delta t^{2}}{2}
The equation is in standard form.
\frac{\Delta s}{\Delta }=\frac{a\Delta t^{2}}{2\Delta }
Divide both sides by \Delta .
s=\frac{a\Delta t^{2}}{2\Delta }
Dividing by \Delta undoes the multiplication by \Delta .
s=\frac{at^{2}}{2}
Divide \frac{a\Delta t^{2}}{2} by \Delta .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}