Solve for f (complex solution)
\left\{\begin{matrix}f=-\frac{24x\left(2x+x_{0}\right)}{\Delta }\text{, }&\Delta \neq 0\\f\in \mathrm{C}\text{, }&\left(x_{0}=-2x\text{ or }x=0\right)\text{ and }\Delta =0\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=-\frac{24x\left(2x+x_{0}\right)}{\Delta }\text{, }&\Delta \neq 0\\f\in \mathrm{R}\text{, }&\left(x_{0}=-2x\text{ or }x=0\right)\text{ and }\Delta =0\end{matrix}\right.
Solve for x (complex solution)
x=-\frac{\sqrt{9x_{0}^{2}-3f\Delta }}{12}-\frac{x_{0}}{4}
x=\frac{\sqrt{9x_{0}^{2}-3f\Delta }}{12}-\frac{x_{0}}{4}
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{3f\Delta }}{12}\text{, }&\left(x_{0}=0\text{ and }\Delta =0\text{ and }f\neq 0\right)\text{ or }\left(\Delta =\frac{3x_{0}^{2}}{f}\text{ and }x_{0}\leq 0\text{ and }f\neq 0\right)\\x=-\frac{\sqrt{3f\Delta }}{12}\text{, }&\left(x_{0}=0\text{ and }\Delta =0\text{ and }f\neq 0\right)\text{ or }\left(\Delta =\frac{3x_{0}^{2}}{f}\text{ and }x_{0}\geq 0\text{ and }f\neq 0\right)\\x=-\frac{\sqrt{9x_{0}^{2}-3f\Delta }}{12}-\frac{x_{0}}{4}\text{; }x=\frac{\sqrt{9x_{0}^{2}-3f\Delta }}{12}-\frac{x_{0}}{4}\text{, }&\left(f>0\text{ and }\Delta \leq \frac{3x_{0}^{2}}{f}\right)\text{ or }\left(\Delta \geq \frac{3x_{0}^{2}}{f}\text{ and }f<0\right)\\x=\frac{-|x_{0}|-x_{0}}{4}\text{; }x=\frac{|x_{0}|-x_{0}}{4}\text{, }&f=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\Delta f=-3\left(x_{0}^{2}+8x_{0}x+16x^{2}\right)+4\left(x_{0}-0x\right)-\left(-3x_{0}^{2}+4x_{0}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x_{0}+4x\right)^{2}.
\Delta f=-3x_{0}^{2}-24xx_{0}-48x^{2}+4\left(x_{0}-0x\right)-\left(-3x_{0}^{2}+4x_{0}\right)
Use the distributive property to multiply -3 by x_{0}^{2}+8x_{0}x+16x^{2}.
\Delta f=-3x_{0}^{2}-24xx_{0}-48x^{2}+4\left(x_{0}-0\right)-\left(-3x_{0}^{2}+4x_{0}\right)
Anything times zero gives zero.
\Delta f=-3x_{0}^{2}-24xx_{0}-48x^{2}+4\left(x_{0}-0\right)+3x_{0}^{2}-4x_{0}
To find the opposite of -3x_{0}^{2}+4x_{0}, find the opposite of each term.
\Delta f=-24xx_{0}-48x^{2}+4\left(x_{0}-0\right)-4x_{0}
Combine -3x_{0}^{2} and 3x_{0}^{2} to get 0.
f\Delta =-48x^{2}-24xx_{0}-4x_{0}+4x_{0}
Reorder the terms.
f\Delta =-48x^{2}-24xx_{0}
Combine -4x_{0} and 4x_{0} to get 0.
\Delta f=-48x^{2}-24xx_{0}
The equation is in standard form.
\frac{\Delta f}{\Delta }=-\frac{24x\left(2x+x_{0}\right)}{\Delta }
Divide both sides by \Delta .
f=-\frac{24x\left(2x+x_{0}\right)}{\Delta }
Dividing by \Delta undoes the multiplication by \Delta .
\Delta f=-3\left(x_{0}^{2}+8x_{0}x+16x^{2}\right)+4\left(x_{0}-0x\right)-\left(-3x_{0}^{2}+4x_{0}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x_{0}+4x\right)^{2}.
\Delta f=-3x_{0}^{2}-24xx_{0}-48x^{2}+4\left(x_{0}-0x\right)-\left(-3x_{0}^{2}+4x_{0}\right)
Use the distributive property to multiply -3 by x_{0}^{2}+8x_{0}x+16x^{2}.
\Delta f=-3x_{0}^{2}-24xx_{0}-48x^{2}+4\left(x_{0}-0\right)-\left(-3x_{0}^{2}+4x_{0}\right)
Anything times zero gives zero.
\Delta f=-3x_{0}^{2}-24xx_{0}-48x^{2}+4\left(x_{0}-0\right)+3x_{0}^{2}-4x_{0}
To find the opposite of -3x_{0}^{2}+4x_{0}, find the opposite of each term.
\Delta f=-24xx_{0}-48x^{2}+4\left(x_{0}-0\right)-4x_{0}
Combine -3x_{0}^{2} and 3x_{0}^{2} to get 0.
f\Delta =-48x^{2}-24xx_{0}-4x_{0}+4x_{0}
Reorder the terms.
f\Delta =-48x^{2}-24xx_{0}
Combine -4x_{0} and 4x_{0} to get 0.
\Delta f=-48x^{2}-24xx_{0}
The equation is in standard form.
\frac{\Delta f}{\Delta }=-\frac{24x\left(2x+x_{0}\right)}{\Delta }
Divide both sides by \Delta .
f=-\frac{24x\left(2x+x_{0}\right)}{\Delta }
Dividing by \Delta undoes the multiplication by \Delta .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}