Solve for S
\left\{\begin{matrix}S=\frac{2\pi r}{\Delta }\text{, }&\Delta \neq 0\\S\in \mathrm{R}\text{, }&r=0\text{ and }\Delta =0\end{matrix}\right.
Solve for r
r=\frac{S\Delta }{2\pi }
Share
Copied to clipboard
\Delta S=2\pi r
The equation is in standard form.
\frac{\Delta S}{\Delta }=\frac{2\pi r}{\Delta }
Divide both sides by \Delta .
S=\frac{2\pi r}{\Delta }
Dividing by \Delta undoes the multiplication by \Delta .
2\pi r=\Delta S
Swap sides so that all variable terms are on the left hand side.
2\pi r=S\Delta
The equation is in standard form.
\frac{2\pi r}{2\pi }=\frac{S\Delta }{2\pi }
Divide both sides by 2\pi .
r=\frac{S\Delta }{2\pi }
Dividing by 2\pi undoes the multiplication by 2\pi .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}