Solve for S
S=-\frac{338}{\Delta }
\Delta \neq 0
Solve for Δ
\Delta =-\frac{338}{S}
S\neq 0
Quiz
Linear Equation
5 problems similar to:
\Delta S = \frac { 26 ^ { 2 } } { 10 } \frac { - 5 } { 1 }
Share
Copied to clipboard
10\Delta S=26^{2}\times \frac{-5}{1}
Multiply both sides of the equation by 10.
10\Delta S=676\times \frac{-5}{1}
Calculate 26 to the power of 2 and get 676.
10\Delta S=676\left(-5\right)
Anything divided by one gives itself.
10\Delta S=-3380
Multiply 676 and -5 to get -3380.
\frac{10\Delta S}{10\Delta }=-\frac{3380}{10\Delta }
Divide both sides by 10\Delta .
S=-\frac{3380}{10\Delta }
Dividing by 10\Delta undoes the multiplication by 10\Delta .
S=-\frac{338}{\Delta }
Divide -3380 by 10\Delta .
10\Delta S=26^{2}\times \frac{-5}{1}
Multiply both sides of the equation by 10.
10\Delta S=676\times \frac{-5}{1}
Calculate 26 to the power of 2 and get 676.
10\Delta S=676\left(-5\right)
Anything divided by one gives itself.
10\Delta S=-3380
Multiply 676 and -5 to get -3380.
10S\Delta =-3380
The equation is in standard form.
\frac{10S\Delta }{10S}=-\frac{3380}{10S}
Divide both sides by 10S.
\Delta =-\frac{3380}{10S}
Dividing by 10S undoes the multiplication by 10S.
\Delta =-\frac{338}{S}
Divide -3380 by 10S.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}