Skip to main content
Solve for x_3
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\Delta =6^{2}a^{2}-4x_{3}\times 3\left(a+2\right)\times 70
Expand \left(6a\right)^{2}.
\Delta =36a^{2}-4x_{3}\times 3\left(a+2\right)\times 70
Calculate 6 to the power of 2 and get 36.
\Delta =36a^{2}-12x_{3}\left(a+2\right)\times 70
Multiply 4 and 3 to get 12.
\Delta =36a^{2}-840x_{3}\left(a+2\right)
Multiply 12 and 70 to get 840.
36a^{2}-840x_{3}\left(a+2\right)=\Delta
Swap sides so that all variable terms are on the left hand side.
36a^{2}-840x_{3}a-1680x_{3}=\Delta
Use the distributive property to multiply -840x_{3} by a+2.
-840x_{3}a-1680x_{3}=\Delta -36a^{2}
Subtract 36a^{2} from both sides.
\left(-840a-1680\right)x_{3}=\Delta -36a^{2}
Combine all terms containing x_{3}.
\frac{\left(-840a-1680\right)x_{3}}{-840a-1680}=\frac{\Delta -36a^{2}}{-840a-1680}
Divide both sides by -840a-1680.
x_{3}=\frac{\Delta -36a^{2}}{-840a-1680}
Dividing by -840a-1680 undoes the multiplication by -840a-1680.
x_{3}=-\frac{\Delta -36a^{2}}{840\left(a+2\right)}
Divide -36a^{2}+\Delta by -840a-1680.