Solve for x_3
\left\{\begin{matrix}x_{3}=\frac{36a^{2}-\Delta }{840\left(a+2\right)}\text{, }&a\neq -2\\x_{3}\in \mathrm{R}\text{, }&\Delta =144\text{ and }a=-2\end{matrix}\right.
Solve for a
a=-\frac{\sqrt{4900x_{3}^{2}+1680x_{3}+\Delta }}{6}+\frac{35x_{3}}{3}
a=\frac{\sqrt{4900x_{3}^{2}+1680x_{3}+\Delta }}{6}+\frac{35x_{3}}{3}\text{, }\Delta \geq -4900x_{3}^{2}-1680x_{3}
Share
Copied to clipboard
\Delta =6^{2}a^{2}-4x_{3}\times 3\left(a+2\right)\times 70
Expand \left(6a\right)^{2}.
\Delta =36a^{2}-4x_{3}\times 3\left(a+2\right)\times 70
Calculate 6 to the power of 2 and get 36.
\Delta =36a^{2}-12x_{3}\left(a+2\right)\times 70
Multiply 4 and 3 to get 12.
\Delta =36a^{2}-840x_{3}\left(a+2\right)
Multiply 12 and 70 to get 840.
36a^{2}-840x_{3}\left(a+2\right)=\Delta
Swap sides so that all variable terms are on the left hand side.
36a^{2}-840x_{3}a-1680x_{3}=\Delta
Use the distributive property to multiply -840x_{3} by a+2.
-840x_{3}a-1680x_{3}=\Delta -36a^{2}
Subtract 36a^{2} from both sides.
\left(-840a-1680\right)x_{3}=\Delta -36a^{2}
Combine all terms containing x_{3}.
\frac{\left(-840a-1680\right)x_{3}}{-840a-1680}=\frac{\Delta -36a^{2}}{-840a-1680}
Divide both sides by -840a-1680.
x_{3}=\frac{\Delta -36a^{2}}{-840a-1680}
Dividing by -840a-1680 undoes the multiplication by -840a-1680.
x_{3}=-\frac{\Delta -36a^{2}}{840\left(a+2\right)}
Divide -36a^{2}+\Delta by -840a-1680.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}