Solve for Δ
\Delta =\left(2m-1\right)^{2}
Solve for m (complex solution)
m=\frac{-\sqrt{\Delta }+1}{2}
m=\frac{\sqrt{\Delta }+1}{2}
Solve for m
m=\frac{-\sqrt{\Delta }+1}{2}
m=\frac{\sqrt{\Delta }+1}{2}\text{, }\Delta \geq 0
Share
Copied to clipboard
\Delta =\left(-4m-1\right)^{2}-4m\left(3m+3\right)
To find the opposite of 4m+1, find the opposite of each term.
\Delta =16m^{2}+8m+1-4m\left(3m+3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-4m-1\right)^{2}.
\Delta =16m^{2}+8m+1-12m^{2}-12m
Use the distributive property to multiply -4m by 3m+3.
\Delta =4m^{2}+8m+1-12m
Combine 16m^{2} and -12m^{2} to get 4m^{2}.
\Delta =4m^{2}-4m+1
Combine 8m and -12m to get -4m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}