\{ x ^ { 2 } + ( \frac { 5 x + 2 } { 3 } ) ^ { 2 } - 2 x + \frac { 5 x + 2 } { 3 } - 3 = 0
Solve for x
x=-1
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
3x^{2}+3\times \left(\frac{5x+2}{3}\right)^{2}-6x+5x+2-9=0
Multiply both sides of the equation by 3.
3x^{2}+3\times \frac{\left(5x+2\right)^{2}}{3^{2}}-6x+5x+2-9=0
To raise \frac{5x+2}{3} to a power, raise both numerator and denominator to the power and then divide.
3x^{2}+\frac{3\left(5x+2\right)^{2}}{3^{2}}-6x+5x+2-9=0
Express 3\times \frac{\left(5x+2\right)^{2}}{3^{2}} as a single fraction.
3x^{2}+\frac{\left(5x+2\right)^{2}}{3}-6x+5x+2-9=0
Cancel out 3 in both numerator and denominator.
3x^{2}+\frac{\left(5x+2\right)^{2}}{3}-x+2-9=0
Combine -6x and 5x to get -x.
3x^{2}+\frac{\left(5x+2\right)^{2}}{3}-x-7=0
Subtract 9 from 2 to get -7.
3x^{2}+\frac{25x^{2}+20x+4}{3}-x-7=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x+2\right)^{2}.
3x^{2}+\frac{25}{3}x^{2}+\frac{20}{3}x+\frac{4}{3}-x-7=0
Divide each term of 25x^{2}+20x+4 by 3 to get \frac{25}{3}x^{2}+\frac{20}{3}x+\frac{4}{3}.
\frac{34}{3}x^{2}+\frac{20}{3}x+\frac{4}{3}-x-7=0
Combine 3x^{2} and \frac{25}{3}x^{2} to get \frac{34}{3}x^{2}.
\frac{34}{3}x^{2}+\frac{17}{3}x+\frac{4}{3}-7=0
Combine \frac{20}{3}x and -x to get \frac{17}{3}x.
\frac{34}{3}x^{2}+\frac{17}{3}x-\frac{17}{3}=0
Subtract 7 from \frac{4}{3} to get -\frac{17}{3}.
x=\frac{-\frac{17}{3}±\sqrt{\left(\frac{17}{3}\right)^{2}-4\times \frac{34}{3}\left(-\frac{17}{3}\right)}}{2\times \frac{34}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{34}{3} for a, \frac{17}{3} for b, and -\frac{17}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{17}{3}±\sqrt{\frac{289}{9}-4\times \frac{34}{3}\left(-\frac{17}{3}\right)}}{2\times \frac{34}{3}}
Square \frac{17}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{17}{3}±\sqrt{\frac{289}{9}-\frac{136}{3}\left(-\frac{17}{3}\right)}}{2\times \frac{34}{3}}
Multiply -4 times \frac{34}{3}.
x=\frac{-\frac{17}{3}±\sqrt{\frac{289+2312}{9}}}{2\times \frac{34}{3}}
Multiply -\frac{136}{3} times -\frac{17}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{17}{3}±\sqrt{289}}{2\times \frac{34}{3}}
Add \frac{289}{9} to \frac{2312}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{17}{3}±17}{2\times \frac{34}{3}}
Take the square root of 289.
x=\frac{-\frac{17}{3}±17}{\frac{68}{3}}
Multiply 2 times \frac{34}{3}.
x=\frac{\frac{34}{3}}{\frac{68}{3}}
Now solve the equation x=\frac{-\frac{17}{3}±17}{\frac{68}{3}} when ± is plus. Add -\frac{17}{3} to 17.
x=\frac{1}{2}
Divide \frac{34}{3} by \frac{68}{3} by multiplying \frac{34}{3} by the reciprocal of \frac{68}{3}.
x=-\frac{\frac{68}{3}}{\frac{68}{3}}
Now solve the equation x=\frac{-\frac{17}{3}±17}{\frac{68}{3}} when ± is minus. Subtract 17 from -\frac{17}{3}.
x=-1
Divide -\frac{68}{3} by \frac{68}{3} by multiplying -\frac{68}{3} by the reciprocal of \frac{68}{3}.
x=\frac{1}{2} x=-1
The equation is now solved.
3x^{2}+3\times \left(\frac{5x+2}{3}\right)^{2}-6x+5x+2-9=0
Multiply both sides of the equation by 3.
3x^{2}+3\times \frac{\left(5x+2\right)^{2}}{3^{2}}-6x+5x+2-9=0
To raise \frac{5x+2}{3} to a power, raise both numerator and denominator to the power and then divide.
3x^{2}+\frac{3\left(5x+2\right)^{2}}{3^{2}}-6x+5x+2-9=0
Express 3\times \frac{\left(5x+2\right)^{2}}{3^{2}} as a single fraction.
3x^{2}+\frac{\left(5x+2\right)^{2}}{3}-6x+5x+2-9=0
Cancel out 3 in both numerator and denominator.
3x^{2}+\frac{\left(5x+2\right)^{2}}{3}-x+2-9=0
Combine -6x and 5x to get -x.
3x^{2}+\frac{\left(5x+2\right)^{2}}{3}-x-7=0
Subtract 9 from 2 to get -7.
3x^{2}+\frac{25x^{2}+20x+4}{3}-x-7=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x+2\right)^{2}.
3x^{2}+\frac{25}{3}x^{2}+\frac{20}{3}x+\frac{4}{3}-x-7=0
Divide each term of 25x^{2}+20x+4 by 3 to get \frac{25}{3}x^{2}+\frac{20}{3}x+\frac{4}{3}.
\frac{34}{3}x^{2}+\frac{20}{3}x+\frac{4}{3}-x-7=0
Combine 3x^{2} and \frac{25}{3}x^{2} to get \frac{34}{3}x^{2}.
\frac{34}{3}x^{2}+\frac{17}{3}x+\frac{4}{3}-7=0
Combine \frac{20}{3}x and -x to get \frac{17}{3}x.
\frac{34}{3}x^{2}+\frac{17}{3}x-\frac{17}{3}=0
Subtract 7 from \frac{4}{3} to get -\frac{17}{3}.
\frac{34}{3}x^{2}+\frac{17}{3}x=\frac{17}{3}
Add \frac{17}{3} to both sides. Anything plus zero gives itself.
\frac{\frac{34}{3}x^{2}+\frac{17}{3}x}{\frac{34}{3}}=\frac{\frac{17}{3}}{\frac{34}{3}}
Divide both sides of the equation by \frac{34}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{17}{3}}{\frac{34}{3}}x=\frac{\frac{17}{3}}{\frac{34}{3}}
Dividing by \frac{34}{3} undoes the multiplication by \frac{34}{3}.
x^{2}+\frac{1}{2}x=\frac{\frac{17}{3}}{\frac{34}{3}}
Divide \frac{17}{3} by \frac{34}{3} by multiplying \frac{17}{3} by the reciprocal of \frac{34}{3}.
x^{2}+\frac{1}{2}x=\frac{1}{2}
Divide \frac{17}{3} by \frac{34}{3} by multiplying \frac{17}{3} by the reciprocal of \frac{34}{3}.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
Add \frac{1}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{4}=-\frac{3}{4}
Simplify.
x=\frac{1}{2} x=-1
Subtract \frac{1}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}