Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+7x-114=0
Multiply both sides of the equation by 2.
a+b=7 ab=2\left(-114\right)=-228
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx-114. To find a and b, set up a system to be solved.
-1,228 -2,114 -3,76 -4,57 -6,38 -12,19
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -228.
-1+228=227 -2+114=112 -3+76=73 -4+57=53 -6+38=32 -12+19=7
Calculate the sum for each pair.
a=-12 b=19
The solution is the pair that gives sum 7.
\left(2x^{2}-12x\right)+\left(19x-114\right)
Rewrite 2x^{2}+7x-114 as \left(2x^{2}-12x\right)+\left(19x-114\right).
2x\left(x-6\right)+19\left(x-6\right)
Factor out 2x in the first and 19 in the second group.
\left(x-6\right)\left(2x+19\right)
Factor out common term x-6 by using distributive property.
x=6 x=-\frac{19}{2}
To find equation solutions, solve x-6=0 and 2x+19=0.
2x^{2}+7x-114=0
Multiply both sides of the equation by 2.
x=\frac{-7±\sqrt{7^{2}-4\times 2\left(-114\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 7 for b, and -114 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2\left(-114\right)}}{2\times 2}
Square 7.
x=\frac{-7±\sqrt{49-8\left(-114\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-7±\sqrt{49+912}}{2\times 2}
Multiply -8 times -114.
x=\frac{-7±\sqrt{961}}{2\times 2}
Add 49 to 912.
x=\frac{-7±31}{2\times 2}
Take the square root of 961.
x=\frac{-7±31}{4}
Multiply 2 times 2.
x=\frac{24}{4}
Now solve the equation x=\frac{-7±31}{4} when ± is plus. Add -7 to 31.
x=6
Divide 24 by 4.
x=-\frac{38}{4}
Now solve the equation x=\frac{-7±31}{4} when ± is minus. Subtract 31 from -7.
x=-\frac{19}{2}
Reduce the fraction \frac{-38}{4} to lowest terms by extracting and canceling out 2.
x=6 x=-\frac{19}{2}
The equation is now solved.
2x^{2}+7x-114=0
Multiply both sides of the equation by 2.
2x^{2}+7x=114
Add 114 to both sides. Anything plus zero gives itself.
\frac{2x^{2}+7x}{2}=\frac{114}{2}
Divide both sides by 2.
x^{2}+\frac{7}{2}x=\frac{114}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{7}{2}x=57
Divide 114 by 2.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=57+\left(\frac{7}{4}\right)^{2}
Divide \frac{7}{2}, the coefficient of the x term, by 2 to get \frac{7}{4}. Then add the square of \frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{2}x+\frac{49}{16}=57+\frac{49}{16}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{961}{16}
Add 57 to \frac{49}{16}.
\left(x+\frac{7}{4}\right)^{2}=\frac{961}{16}
Factor x^{2}+\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{961}{16}}
Take the square root of both sides of the equation.
x+\frac{7}{4}=\frac{31}{4} x+\frac{7}{4}=-\frac{31}{4}
Simplify.
x=6 x=-\frac{19}{2}
Subtract \frac{7}{4} from both sides of the equation.