Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(x^{\frac{2}{3}}\left(x^{-\frac{1}{3}}y^{-\frac{1}{2}}\left(x^{2}\right)^{-\frac{2}{3}}\left(y^{-2}\right)^{-\frac{2}{3}}\right)^{-\frac{1}{2}}\right)^{6}
Expand \left(x^{2}y^{-2}\right)^{-\frac{2}{3}}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{1}{3}}y^{-\frac{1}{2}}x^{-\frac{4}{3}}\left(y^{-2}\right)^{-\frac{2}{3}}\right)^{-\frac{1}{2}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and -\frac{2}{3} to get -\frac{4}{3}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{1}{3}}y^{-\frac{1}{2}}x^{-\frac{4}{3}}y^{\frac{4}{3}}\right)^{-\frac{1}{2}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply -2 and -\frac{2}{3} to get \frac{4}{3}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{5}{3}}y^{-\frac{1}{2}}y^{\frac{4}{3}}\right)^{-\frac{1}{2}}\right)^{6}
To multiply powers of the same base, add their exponents. Add -\frac{1}{3} and -\frac{4}{3} to get -\frac{5}{3}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{5}{3}}y^{\frac{5}{6}}\right)^{-\frac{1}{2}}\right)^{6}
To multiply powers of the same base, add their exponents. Add -\frac{1}{2} and \frac{4}{3} to get \frac{5}{6}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{5}{3}}\right)^{-\frac{1}{2}}\left(y^{\frac{5}{6}}\right)^{-\frac{1}{2}}\right)^{6}
Expand \left(x^{-\frac{5}{3}}y^{\frac{5}{6}}\right)^{-\frac{1}{2}}.
\left(x^{\frac{2}{3}}x^{\frac{5}{6}}\left(y^{\frac{5}{6}}\right)^{-\frac{1}{2}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply -\frac{5}{3} and -\frac{1}{2} to get \frac{5}{6}.
\left(x^{\frac{2}{3}}x^{\frac{5}{6}}y^{-\frac{5}{12}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply \frac{5}{6} and -\frac{1}{2} to get -\frac{5}{12}.
\left(x^{\frac{3}{2}}y^{-\frac{5}{12}}\right)^{6}
To multiply powers of the same base, add their exponents. Add \frac{2}{3} and \frac{5}{6} to get \frac{3}{2}.
\left(x^{\frac{3}{2}}\right)^{6}\left(y^{-\frac{5}{12}}\right)^{6}
Expand \left(x^{\frac{3}{2}}y^{-\frac{5}{12}}\right)^{6}.
x^{9}\left(y^{-\frac{5}{12}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply \frac{3}{2} and 6 to get 9.
x^{9}y^{-\frac{5}{2}}
To raise a power to another power, multiply the exponents. Multiply -\frac{5}{12} and 6 to get -\frac{5}{2}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{1}{3}}y^{-\frac{1}{2}}\left(x^{2}\right)^{-\frac{2}{3}}\left(y^{-2}\right)^{-\frac{2}{3}}\right)^{-\frac{1}{2}}\right)^{6}
Expand \left(x^{2}y^{-2}\right)^{-\frac{2}{3}}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{1}{3}}y^{-\frac{1}{2}}x^{-\frac{4}{3}}\left(y^{-2}\right)^{-\frac{2}{3}}\right)^{-\frac{1}{2}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and -\frac{2}{3} to get -\frac{4}{3}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{1}{3}}y^{-\frac{1}{2}}x^{-\frac{4}{3}}y^{\frac{4}{3}}\right)^{-\frac{1}{2}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply -2 and -\frac{2}{3} to get \frac{4}{3}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{5}{3}}y^{-\frac{1}{2}}y^{\frac{4}{3}}\right)^{-\frac{1}{2}}\right)^{6}
To multiply powers of the same base, add their exponents. Add -\frac{1}{3} and -\frac{4}{3} to get -\frac{5}{3}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{5}{3}}y^{\frac{5}{6}}\right)^{-\frac{1}{2}}\right)^{6}
To multiply powers of the same base, add their exponents. Add -\frac{1}{2} and \frac{4}{3} to get \frac{5}{6}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{5}{3}}\right)^{-\frac{1}{2}}\left(y^{\frac{5}{6}}\right)^{-\frac{1}{2}}\right)^{6}
Expand \left(x^{-\frac{5}{3}}y^{\frac{5}{6}}\right)^{-\frac{1}{2}}.
\left(x^{\frac{2}{3}}x^{\frac{5}{6}}\left(y^{\frac{5}{6}}\right)^{-\frac{1}{2}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply -\frac{5}{3} and -\frac{1}{2} to get \frac{5}{6}.
\left(x^{\frac{2}{3}}x^{\frac{5}{6}}y^{-\frac{5}{12}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply \frac{5}{6} and -\frac{1}{2} to get -\frac{5}{12}.
\left(x^{\frac{3}{2}}y^{-\frac{5}{12}}\right)^{6}
To multiply powers of the same base, add their exponents. Add \frac{2}{3} and \frac{5}{6} to get \frac{3}{2}.
\left(x^{\frac{3}{2}}\right)^{6}\left(y^{-\frac{5}{12}}\right)^{6}
Expand \left(x^{\frac{3}{2}}y^{-\frac{5}{12}}\right)^{6}.
x^{9}\left(y^{-\frac{5}{12}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply \frac{3}{2} and 6 to get 9.
x^{9}y^{-\frac{5}{2}}
To raise a power to another power, multiply the exponents. Multiply -\frac{5}{12} and 6 to get -\frac{5}{2}.