Evaluate
\frac{x^{9}}{y^{\frac{5}{2}}}
Expand
\frac{x^{9}}{y^{\frac{5}{2}}}
Share
Copied to clipboard
\left(x^{\frac{2}{3}}\left(x^{-\frac{1}{3}}y^{-\frac{1}{2}}\left(x^{2}\right)^{-\frac{2}{3}}\left(y^{-2}\right)^{-\frac{2}{3}}\right)^{-\frac{1}{2}}\right)^{6}
Expand \left(x^{2}y^{-2}\right)^{-\frac{2}{3}}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{1}{3}}y^{-\frac{1}{2}}x^{-\frac{4}{3}}\left(y^{-2}\right)^{-\frac{2}{3}}\right)^{-\frac{1}{2}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and -\frac{2}{3} to get -\frac{4}{3}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{1}{3}}y^{-\frac{1}{2}}x^{-\frac{4}{3}}y^{\frac{4}{3}}\right)^{-\frac{1}{2}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply -2 and -\frac{2}{3} to get \frac{4}{3}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{5}{3}}y^{-\frac{1}{2}}y^{\frac{4}{3}}\right)^{-\frac{1}{2}}\right)^{6}
To multiply powers of the same base, add their exponents. Add -\frac{1}{3} and -\frac{4}{3} to get -\frac{5}{3}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{5}{3}}y^{\frac{5}{6}}\right)^{-\frac{1}{2}}\right)^{6}
To multiply powers of the same base, add their exponents. Add -\frac{1}{2} and \frac{4}{3} to get \frac{5}{6}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{5}{3}}\right)^{-\frac{1}{2}}\left(y^{\frac{5}{6}}\right)^{-\frac{1}{2}}\right)^{6}
Expand \left(x^{-\frac{5}{3}}y^{\frac{5}{6}}\right)^{-\frac{1}{2}}.
\left(x^{\frac{2}{3}}x^{\frac{5}{6}}\left(y^{\frac{5}{6}}\right)^{-\frac{1}{2}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply -\frac{5}{3} and -\frac{1}{2} to get \frac{5}{6}.
\left(x^{\frac{2}{3}}x^{\frac{5}{6}}y^{-\frac{5}{12}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply \frac{5}{6} and -\frac{1}{2} to get -\frac{5}{12}.
\left(x^{\frac{3}{2}}y^{-\frac{5}{12}}\right)^{6}
To multiply powers of the same base, add their exponents. Add \frac{2}{3} and \frac{5}{6} to get \frac{3}{2}.
\left(x^{\frac{3}{2}}\right)^{6}\left(y^{-\frac{5}{12}}\right)^{6}
Expand \left(x^{\frac{3}{2}}y^{-\frac{5}{12}}\right)^{6}.
x^{9}\left(y^{-\frac{5}{12}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply \frac{3}{2} and 6 to get 9.
x^{9}y^{-\frac{5}{2}}
To raise a power to another power, multiply the exponents. Multiply -\frac{5}{12} and 6 to get -\frac{5}{2}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{1}{3}}y^{-\frac{1}{2}}\left(x^{2}\right)^{-\frac{2}{3}}\left(y^{-2}\right)^{-\frac{2}{3}}\right)^{-\frac{1}{2}}\right)^{6}
Expand \left(x^{2}y^{-2}\right)^{-\frac{2}{3}}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{1}{3}}y^{-\frac{1}{2}}x^{-\frac{4}{3}}\left(y^{-2}\right)^{-\frac{2}{3}}\right)^{-\frac{1}{2}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and -\frac{2}{3} to get -\frac{4}{3}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{1}{3}}y^{-\frac{1}{2}}x^{-\frac{4}{3}}y^{\frac{4}{3}}\right)^{-\frac{1}{2}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply -2 and -\frac{2}{3} to get \frac{4}{3}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{5}{3}}y^{-\frac{1}{2}}y^{\frac{4}{3}}\right)^{-\frac{1}{2}}\right)^{6}
To multiply powers of the same base, add their exponents. Add -\frac{1}{3} and -\frac{4}{3} to get -\frac{5}{3}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{5}{3}}y^{\frac{5}{6}}\right)^{-\frac{1}{2}}\right)^{6}
To multiply powers of the same base, add their exponents. Add -\frac{1}{2} and \frac{4}{3} to get \frac{5}{6}.
\left(x^{\frac{2}{3}}\left(x^{-\frac{5}{3}}\right)^{-\frac{1}{2}}\left(y^{\frac{5}{6}}\right)^{-\frac{1}{2}}\right)^{6}
Expand \left(x^{-\frac{5}{3}}y^{\frac{5}{6}}\right)^{-\frac{1}{2}}.
\left(x^{\frac{2}{3}}x^{\frac{5}{6}}\left(y^{\frac{5}{6}}\right)^{-\frac{1}{2}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply -\frac{5}{3} and -\frac{1}{2} to get \frac{5}{6}.
\left(x^{\frac{2}{3}}x^{\frac{5}{6}}y^{-\frac{5}{12}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply \frac{5}{6} and -\frac{1}{2} to get -\frac{5}{12}.
\left(x^{\frac{3}{2}}y^{-\frac{5}{12}}\right)^{6}
To multiply powers of the same base, add their exponents. Add \frac{2}{3} and \frac{5}{6} to get \frac{3}{2}.
\left(x^{\frac{3}{2}}\right)^{6}\left(y^{-\frac{5}{12}}\right)^{6}
Expand \left(x^{\frac{3}{2}}y^{-\frac{5}{12}}\right)^{6}.
x^{9}\left(y^{-\frac{5}{12}}\right)^{6}
To raise a power to another power, multiply the exponents. Multiply \frac{3}{2} and 6 to get 9.
x^{9}y^{-\frac{5}{2}}
To raise a power to another power, multiply the exponents. Multiply -\frac{5}{12} and 6 to get -\frac{5}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}