Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

m^{2}-3m+3-1=0
Subtract 1 from both sides.
m^{2}-3m+2=0
Subtract 1 from 3 to get 2.
a+b=-3 ab=2
To solve the equation, factor m^{2}-3m+2 using formula m^{2}+\left(a+b\right)m+ab=\left(m+a\right)\left(m+b\right). To find a and b, set up a system to be solved.
a=-2 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(m-2\right)\left(m-1\right)
Rewrite factored expression \left(m+a\right)\left(m+b\right) using the obtained values.
m=2 m=1
To find equation solutions, solve m-2=0 and m-1=0.
m^{2}-3m+3-1=0
Subtract 1 from both sides.
m^{2}-3m+2=0
Subtract 1 from 3 to get 2.
a+b=-3 ab=1\times 2=2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as m^{2}+am+bm+2. To find a and b, set up a system to be solved.
a=-2 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(m^{2}-2m\right)+\left(-m+2\right)
Rewrite m^{2}-3m+2 as \left(m^{2}-2m\right)+\left(-m+2\right).
m\left(m-2\right)-\left(m-2\right)
Factor out m in the first and -1 in the second group.
\left(m-2\right)\left(m-1\right)
Factor out common term m-2 by using distributive property.
m=2 m=1
To find equation solutions, solve m-2=0 and m-1=0.
m^{2}-3m+3=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m^{2}-3m+3-1=1-1
Subtract 1 from both sides of the equation.
m^{2}-3m+3-1=0
Subtracting 1 from itself leaves 0.
m^{2}-3m+2=0
Subtract 1 from 3.
m=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-3\right)±\sqrt{9-4\times 2}}{2}
Square -3.
m=\frac{-\left(-3\right)±\sqrt{9-8}}{2}
Multiply -4 times 2.
m=\frac{-\left(-3\right)±\sqrt{1}}{2}
Add 9 to -8.
m=\frac{-\left(-3\right)±1}{2}
Take the square root of 1.
m=\frac{3±1}{2}
The opposite of -3 is 3.
m=\frac{4}{2}
Now solve the equation m=\frac{3±1}{2} when ± is plus. Add 3 to 1.
m=2
Divide 4 by 2.
m=\frac{2}{2}
Now solve the equation m=\frac{3±1}{2} when ± is minus. Subtract 1 from 3.
m=1
Divide 2 by 2.
m=2 m=1
The equation is now solved.
m^{2}-3m+3=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
m^{2}-3m+3-3=1-3
Subtract 3 from both sides of the equation.
m^{2}-3m=1-3
Subtracting 3 from itself leaves 0.
m^{2}-3m=-2
Subtract 3 from 1.
m^{2}-3m+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-3m+\frac{9}{4}=-2+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
m^{2}-3m+\frac{9}{4}=\frac{1}{4}
Add -2 to \frac{9}{4}.
\left(m-\frac{3}{2}\right)^{2}=\frac{1}{4}
Factor m^{2}-3m+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
m-\frac{3}{2}=\frac{1}{2} m-\frac{3}{2}=-\frac{1}{2}
Simplify.
m=2 m=1
Add \frac{3}{2} to both sides of the equation.