Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a^{2}b^{2}c-\frac{1}{2}a^{2}b^{2}c+\frac{3}{2}a^{2}b^{2}c}{-\left(-abc-\frac{1}{8}abc\right)}
The opposite of -\frac{3}{2}a^{2}b^{2}c is \frac{3}{2}a^{2}b^{2}c.
\frac{a^{2}b^{2}c+a^{2}b^{2}c}{-\left(-abc-\frac{1}{8}abc\right)}
Combine -\frac{1}{2}a^{2}b^{2}c and \frac{3}{2}a^{2}b^{2}c to get a^{2}b^{2}c.
\frac{2a^{2}b^{2}c}{-\left(-abc-\frac{1}{8}abc\right)}
Combine a^{2}b^{2}c and a^{2}b^{2}c to get 2a^{2}b^{2}c.
\frac{2a^{2}b^{2}c}{-\left(-abc\right)+\frac{1}{8}abc}
To find the opposite of -abc-\frac{1}{8}abc, find the opposite of each term.
\frac{2ca^{2}b^{2}}{\frac{1}{8}\left(1+8\right)abc}
Factor the expressions that are not already factored.
\frac{2ab}{\frac{1}{8}\left(1+8\right)}
Cancel out abc in both numerator and denominator.
\frac{2ab}{\frac{9}{8}}
Expand the expression.
\frac{2ab\times 8}{9}
Divide 2ab by \frac{9}{8} by multiplying 2ab by the reciprocal of \frac{9}{8}.
\frac{16ab}{9}
Multiply 2 and 8 to get 16.
\frac{a^{2}b^{2}c-\frac{1}{2}a^{2}b^{2}c+\frac{3}{2}a^{2}b^{2}c}{-\left(-abc-\frac{1}{8}abc\right)}
The opposite of -\frac{3}{2}a^{2}b^{2}c is \frac{3}{2}a^{2}b^{2}c.
\frac{a^{2}b^{2}c+a^{2}b^{2}c}{-\left(-abc-\frac{1}{8}abc\right)}
Combine -\frac{1}{2}a^{2}b^{2}c and \frac{3}{2}a^{2}b^{2}c to get a^{2}b^{2}c.
\frac{2a^{2}b^{2}c}{-\left(-abc-\frac{1}{8}abc\right)}
Combine a^{2}b^{2}c and a^{2}b^{2}c to get 2a^{2}b^{2}c.
\frac{2a^{2}b^{2}c}{-\left(-abc\right)+\frac{1}{8}abc}
To find the opposite of -abc-\frac{1}{8}abc, find the opposite of each term.
\frac{2ca^{2}b^{2}}{\frac{1}{8}\left(1+8\right)abc}
Factor the expressions that are not already factored.
\frac{2ab}{\frac{1}{8}\left(1+8\right)}
Cancel out abc in both numerator and denominator.
\frac{2ab}{\frac{9}{8}}
Expand the expression.
\frac{2ab\times 8}{9}
Divide 2ab by \frac{9}{8} by multiplying 2ab by the reciprocal of \frac{9}{8}.
\frac{16ab}{9}
Multiply 2 and 8 to get 16.