\{ 3 - \frac { 2 } { 4 - \frac { 8 } { 2 - x } } = 2 \}
Solve for x
x=-2
Graph
Share
Copied to clipboard
3-\frac{2}{\frac{4\left(2-x\right)}{2-x}-\frac{8}{2-x}}=2
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{2-x}{2-x}.
3-\frac{2}{\frac{4\left(2-x\right)-8}{2-x}}=2
Since \frac{4\left(2-x\right)}{2-x} and \frac{8}{2-x} have the same denominator, subtract them by subtracting their numerators.
3-\frac{2}{\frac{8-4x-8}{2-x}}=2
Do the multiplications in 4\left(2-x\right)-8.
3-\frac{2}{\frac{-4x}{2-x}}=2
Combine like terms in 8-4x-8.
3-\frac{2\left(2-x\right)}{-4x}=2
Variable x cannot be equal to 2 since division by zero is not defined. Divide 2 by \frac{-4x}{2-x} by multiplying 2 by the reciprocal of \frac{-4x}{2-x}.
3-\frac{-x+2}{-2x}=2
Cancel out 2 in both numerator and denominator.
\frac{3\left(-2\right)x}{-2x}-\frac{-x+2}{-2x}=2
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{-2x}{-2x}.
\frac{3\left(-2\right)x-\left(-x+2\right)}{-2x}=2
Since \frac{3\left(-2\right)x}{-2x} and \frac{-x+2}{-2x} have the same denominator, subtract them by subtracting their numerators.
\frac{-6x+x-2}{-2x}=2
Do the multiplications in 3\left(-2\right)x-\left(-x+2\right).
\frac{-5x-2}{-2x}=2
Combine like terms in -6x+x-2.
-5x-2=-4x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by -2x.
-5x-2+4x=0
Add 4x to both sides.
-x-2=0
Combine -5x and 4x to get -x.
-x=2
Add 2 to both sides. Anything plus zero gives itself.
x=-2
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}