Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(3-\left(-\frac{25}{10}+\frac{6}{10}+\frac{1}{4}\right)\left(-\frac{6}{11}\right)\right)\left(1-\frac{3}{4}-\frac{7}{3}\right)
Least common multiple of 2 and 5 is 10. Convert -\frac{5}{2} and \frac{3}{5} to fractions with denominator 10.
\left(3-\left(\frac{-25+6}{10}+\frac{1}{4}\right)\left(-\frac{6}{11}\right)\right)\left(1-\frac{3}{4}-\frac{7}{3}\right)
Since -\frac{25}{10} and \frac{6}{10} have the same denominator, add them by adding their numerators.
\left(3-\left(-\frac{19}{10}+\frac{1}{4}\right)\left(-\frac{6}{11}\right)\right)\left(1-\frac{3}{4}-\frac{7}{3}\right)
Add -25 and 6 to get -19.
\left(3-\left(-\frac{38}{20}+\frac{5}{20}\right)\left(-\frac{6}{11}\right)\right)\left(1-\frac{3}{4}-\frac{7}{3}\right)
Least common multiple of 10 and 4 is 20. Convert -\frac{19}{10} and \frac{1}{4} to fractions with denominator 20.
\left(3-\frac{-38+5}{20}\left(-\frac{6}{11}\right)\right)\left(1-\frac{3}{4}-\frac{7}{3}\right)
Since -\frac{38}{20} and \frac{5}{20} have the same denominator, add them by adding their numerators.
\left(3-\left(-\frac{33}{20}\left(-\frac{6}{11}\right)\right)\right)\left(1-\frac{3}{4}-\frac{7}{3}\right)
Add -38 and 5 to get -33.
\left(3-\frac{-33\left(-6\right)}{20\times 11}\right)\left(1-\frac{3}{4}-\frac{7}{3}\right)
Multiply -\frac{33}{20} times -\frac{6}{11} by multiplying numerator times numerator and denominator times denominator.
\left(3-\frac{198}{220}\right)\left(1-\frac{3}{4}-\frac{7}{3}\right)
Do the multiplications in the fraction \frac{-33\left(-6\right)}{20\times 11}.
\left(3-\frac{9}{10}\right)\left(1-\frac{3}{4}-\frac{7}{3}\right)
Reduce the fraction \frac{198}{220} to lowest terms by extracting and canceling out 22.
\left(\frac{30}{10}-\frac{9}{10}\right)\left(1-\frac{3}{4}-\frac{7}{3}\right)
Convert 3 to fraction \frac{30}{10}.
\frac{30-9}{10}\left(1-\frac{3}{4}-\frac{7}{3}\right)
Since \frac{30}{10} and \frac{9}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{21}{10}\left(1-\frac{3}{4}-\frac{7}{3}\right)
Subtract 9 from 30 to get 21.
\frac{21}{10}\left(\frac{4}{4}-\frac{3}{4}-\frac{7}{3}\right)
Convert 1 to fraction \frac{4}{4}.
\frac{21}{10}\left(\frac{4-3}{4}-\frac{7}{3}\right)
Since \frac{4}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{21}{10}\left(\frac{1}{4}-\frac{7}{3}\right)
Subtract 3 from 4 to get 1.
\frac{21}{10}\left(\frac{3}{12}-\frac{28}{12}\right)
Least common multiple of 4 and 3 is 12. Convert \frac{1}{4} and \frac{7}{3} to fractions with denominator 12.
\frac{21}{10}\times \frac{3-28}{12}
Since \frac{3}{12} and \frac{28}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{21}{10}\left(-\frac{25}{12}\right)
Subtract 28 from 3 to get -25.
\frac{21\left(-25\right)}{10\times 12}
Multiply \frac{21}{10} times -\frac{25}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{-525}{120}
Do the multiplications in the fraction \frac{21\left(-25\right)}{10\times 12}.
-\frac{35}{8}
Reduce the fraction \frac{-525}{120} to lowest terms by extracting and canceling out 15.