\{ 3 \sqrt { 7 x } - y = 2 - \frac { \sqrt { 3 } } { 2 }
Solve for x
x=\frac{\left(2y+4-\sqrt{3}\right)^{2}}{252}
y\geq \frac{\sqrt{3}}{2}-2
Solve for x (complex solution)
x=\frac{\left(2y+4-\sqrt{3}\right)^{2}}{252}
arg(\frac{y}{21}-\frac{\sqrt{3}}{42}+\frac{2}{21})<\pi \text{ or }y=\frac{\sqrt{3}}{2}-2
Graph
Share
Copied to clipboard
3\sqrt{7x}-y-\left(-y\right)=-\frac{\sqrt{3}}{2}+2-\left(-y\right)
Subtract -y from both sides of the equation.
3\sqrt{7x}=-\frac{\sqrt{3}}{2}+2-\left(-y\right)
Subtracting -y from itself leaves 0.
3\sqrt{7x}=y-\frac{\sqrt{3}}{2}+2
Subtract -y from 2-\frac{1}{2}\sqrt{3}.
\frac{3\sqrt{7x}}{3}=\frac{y-\frac{\sqrt{3}}{2}+2}{3}
Divide both sides by 3.
\sqrt{7x}=\frac{y-\frac{\sqrt{3}}{2}+2}{3}
Dividing by 3 undoes the multiplication by 3.
\sqrt{7x}=\frac{y}{3}-\frac{\sqrt{3}}{6}+\frac{2}{3}
Divide 2-\frac{\sqrt{3}}{2}+y by 3.
7x=\frac{\left(2y+4-\sqrt{3}\right)^{2}}{36}
Square both sides of the equation.
\frac{7x}{7}=\frac{\left(2y+4-\sqrt{3}\right)^{2}}{7\times 36}
Divide both sides by 7.
x=\frac{\left(2y+4-\sqrt{3}\right)^{2}}{7\times 36}
Dividing by 7 undoes the multiplication by 7.
x=\frac{\left(2y+4-\sqrt{3}\right)^{2}}{252}
Divide \frac{\left(4-\sqrt{3}+2y\right)^{2}}{36} by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}