Evaluate
\frac{1}{3}\approx 0.333333333
Factor
\frac{1}{3} = 0.3333333333333333
Share
Copied to clipboard
\left(\frac{4}{2}-\frac{3}{2}+\frac{1}{5}+\frac{4}{3}-\frac{5}{2}-\frac{3}{7}+\frac{5}{4}-\frac{1}{4}\right)\times \frac{35}{11}
Convert 2 to fraction \frac{4}{2}.
\left(\frac{4-3}{2}+\frac{1}{5}+\frac{4}{3}-\frac{5}{2}-\frac{3}{7}+\frac{5}{4}-\frac{1}{4}\right)\times \frac{35}{11}
Since \frac{4}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{1}{2}+\frac{1}{5}+\frac{4}{3}-\frac{5}{2}-\frac{3}{7}+\frac{5}{4}-\frac{1}{4}\right)\times \frac{35}{11}
Subtract 3 from 4 to get 1.
\left(\frac{5}{10}+\frac{2}{10}+\frac{4}{3}-\frac{5}{2}-\frac{3}{7}+\frac{5}{4}-\frac{1}{4}\right)\times \frac{35}{11}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{1}{5} to fractions with denominator 10.
\left(\frac{5+2}{10}+\frac{4}{3}-\frac{5}{2}-\frac{3}{7}+\frac{5}{4}-\frac{1}{4}\right)\times \frac{35}{11}
Since \frac{5}{10} and \frac{2}{10} have the same denominator, add them by adding their numerators.
\left(\frac{7}{10}+\frac{4}{3}-\frac{5}{2}-\frac{3}{7}+\frac{5}{4}-\frac{1}{4}\right)\times \frac{35}{11}
Add 5 and 2 to get 7.
\left(\frac{21}{30}+\frac{40}{30}-\frac{5}{2}-\frac{3}{7}+\frac{5}{4}-\frac{1}{4}\right)\times \frac{35}{11}
Least common multiple of 10 and 3 is 30. Convert \frac{7}{10} and \frac{4}{3} to fractions with denominator 30.
\left(\frac{21+40}{30}-\frac{5}{2}-\frac{3}{7}+\frac{5}{4}-\frac{1}{4}\right)\times \frac{35}{11}
Since \frac{21}{30} and \frac{40}{30} have the same denominator, add them by adding their numerators.
\left(\frac{61}{30}-\frac{5}{2}-\frac{3}{7}+\frac{5}{4}-\frac{1}{4}\right)\times \frac{35}{11}
Add 21 and 40 to get 61.
\left(\frac{61}{30}-\frac{75}{30}-\frac{3}{7}+\frac{5}{4}-\frac{1}{4}\right)\times \frac{35}{11}
Least common multiple of 30 and 2 is 30. Convert \frac{61}{30} and \frac{5}{2} to fractions with denominator 30.
\left(\frac{61-75}{30}-\frac{3}{7}+\frac{5}{4}-\frac{1}{4}\right)\times \frac{35}{11}
Since \frac{61}{30} and \frac{75}{30} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{-14}{30}-\frac{3}{7}+\frac{5}{4}-\frac{1}{4}\right)\times \frac{35}{11}
Subtract 75 from 61 to get -14.
\left(-\frac{7}{15}-\frac{3}{7}+\frac{5}{4}-\frac{1}{4}\right)\times \frac{35}{11}
Reduce the fraction \frac{-14}{30} to lowest terms by extracting and canceling out 2.
\left(-\frac{49}{105}-\frac{45}{105}+\frac{5}{4}-\frac{1}{4}\right)\times \frac{35}{11}
Least common multiple of 15 and 7 is 105. Convert -\frac{7}{15} and \frac{3}{7} to fractions with denominator 105.
\left(\frac{-49-45}{105}+\frac{5}{4}-\frac{1}{4}\right)\times \frac{35}{11}
Since -\frac{49}{105} and \frac{45}{105} have the same denominator, subtract them by subtracting their numerators.
\left(-\frac{94}{105}+\frac{5}{4}-\frac{1}{4}\right)\times \frac{35}{11}
Subtract 45 from -49 to get -94.
\left(-\frac{376}{420}+\frac{525}{420}-\frac{1}{4}\right)\times \frac{35}{11}
Least common multiple of 105 and 4 is 420. Convert -\frac{94}{105} and \frac{5}{4} to fractions with denominator 420.
\left(\frac{-376+525}{420}-\frac{1}{4}\right)\times \frac{35}{11}
Since -\frac{376}{420} and \frac{525}{420} have the same denominator, add them by adding their numerators.
\left(\frac{149}{420}-\frac{1}{4}\right)\times \frac{35}{11}
Add -376 and 525 to get 149.
\left(\frac{149}{420}-\frac{105}{420}\right)\times \frac{35}{11}
Least common multiple of 420 and 4 is 420. Convert \frac{149}{420} and \frac{1}{4} to fractions with denominator 420.
\frac{149-105}{420}\times \frac{35}{11}
Since \frac{149}{420} and \frac{105}{420} have the same denominator, subtract them by subtracting their numerators.
\frac{44}{420}\times \frac{35}{11}
Subtract 105 from 149 to get 44.
\frac{11}{105}\times \frac{35}{11}
Reduce the fraction \frac{44}{420} to lowest terms by extracting and canceling out 4.
\frac{11\times 35}{105\times 11}
Multiply \frac{11}{105} times \frac{35}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{35}{105}
Cancel out 11 in both numerator and denominator.
\frac{1}{3}
Reduce the fraction \frac{35}{105} to lowest terms by extracting and canceling out 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}