Solve for P (complex solution)
\left\{\begin{matrix}\\P=0\text{, }&\text{unconditionally}\\P\in \mathrm{C}\text{, }&p=\frac{907500}{12527}\end{matrix}\right.
Solve for P
\left\{\begin{matrix}\\P=0\text{, }&\text{unconditionally}\\P\in \mathrm{R}\text{, }&p=\frac{907500}{12527}\end{matrix}\right.
Solve for p
p = \frac{907500}{12527} = 72\frac{5556}{12527} = 72.4435219924962
p\neq 0
Share
Copied to clipboard
\left(173-\left(47.73+0\times 1p^{12}+\frac{9075}{p}\right)\right)Pp=0
Multiply both sides of the equation by p.
\left(173-\left(47.73+0p^{12}+\frac{9075}{p}\right)\right)Pp=0
Multiply 0 and 1 to get 0.
\left(173-\left(47.73+0+\frac{9075}{p}\right)\right)Pp=0
Anything times zero gives zero.
\left(173-\left(47.73+\frac{9075}{p}\right)\right)Pp=0
Add 47.73 and 0 to get 47.73.
\left(173-47.73-\frac{9075}{p}\right)Pp=0
To find the opposite of 47.73+\frac{9075}{p}, find the opposite of each term.
\left(125.27-\frac{9075}{p}\right)Pp=0
Subtract 47.73 from 173 to get 125.27.
\left(125.27P-\frac{9075}{p}P\right)p=0
Use the distributive property to multiply 125.27-\frac{9075}{p} by P.
\left(125.27P-\frac{9075P}{p}\right)p=0
Express \frac{9075}{p}P as a single fraction.
125.27Pp-\frac{9075P}{p}p=0
Use the distributive property to multiply 125.27P-\frac{9075P}{p} by p.
125.27Pp-\frac{9075Pp}{p}=0
Express \frac{9075P}{p}p as a single fraction.
125.27Pp-9075P=0
Cancel out p in both numerator and denominator.
\left(125.27p-9075\right)P=0
Combine all terms containing P.
\left(\frac{12527p}{100}-9075\right)P=0
The equation is in standard form.
P=0
Divide 0 by 125.27p-9075.
\left(173-\left(47.73+0\times 1p^{12}+\frac{9075}{p}\right)\right)Pp=0
Multiply both sides of the equation by p.
\left(173-\left(47.73+0p^{12}+\frac{9075}{p}\right)\right)Pp=0
Multiply 0 and 1 to get 0.
\left(173-\left(47.73+0+\frac{9075}{p}\right)\right)Pp=0
Anything times zero gives zero.
\left(173-\left(47.73+\frac{9075}{p}\right)\right)Pp=0
Add 47.73 and 0 to get 47.73.
\left(173-47.73-\frac{9075}{p}\right)Pp=0
To find the opposite of 47.73+\frac{9075}{p}, find the opposite of each term.
\left(125.27-\frac{9075}{p}\right)Pp=0
Subtract 47.73 from 173 to get 125.27.
\left(125.27P-\frac{9075}{p}P\right)p=0
Use the distributive property to multiply 125.27-\frac{9075}{p} by P.
\left(125.27P-\frac{9075P}{p}\right)p=0
Express \frac{9075}{p}P as a single fraction.
125.27Pp-\frac{9075P}{p}p=0
Use the distributive property to multiply 125.27P-\frac{9075P}{p} by p.
125.27Pp-\frac{9075Pp}{p}=0
Express \frac{9075P}{p}p as a single fraction.
125.27Pp-9075P=0
Cancel out p in both numerator and denominator.
\left(125.27p-9075\right)P=0
Combine all terms containing P.
\left(\frac{12527p}{100}-9075\right)P=0
The equation is in standard form.
P=0
Divide 0 by 125.27p-9075.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}