Evaluate
\frac{5}{2}+2q-3p
Expand
\frac{5}{2}+2q-3p
Share
Copied to clipboard
-2p-\left(-3q\right)-\frac{1}{2}-p-q+3
To find the opposite of 2p-3q+\frac{1}{2}, find the opposite of each term.
-2p+3q-\frac{1}{2}-p-q+3
The opposite of -3q is 3q.
-2p+2q-\frac{1}{2}-p+3
Combine 3q and -q to get 2q.
-2p+2q-\frac{1}{2}-p+\frac{6}{2}
Convert 3 to fraction \frac{6}{2}.
-2p+2q+\frac{-1+6}{2}-p
Since -\frac{1}{2} and \frac{6}{2} have the same denominator, add them by adding their numerators.
-2p+2q+\frac{5}{2}-p
Add -1 and 6 to get 5.
-3p+2q+\frac{5}{2}
Combine -2p and -p to get -3p.
-2p-\left(-3q\right)-\frac{1}{2}-p-q+3
To find the opposite of 2p-3q+\frac{1}{2}, find the opposite of each term.
-2p+3q-\frac{1}{2}-p-q+3
The opposite of -3q is 3q.
-2p+2q-\frac{1}{2}-p+3
Combine 3q and -q to get 2q.
-2p+2q-\frac{1}{2}-p+\frac{6}{2}
Convert 3 to fraction \frac{6}{2}.
-2p+2q+\frac{-1+6}{2}-p
Since -\frac{1}{2} and \frac{6}{2} have the same denominator, add them by adding their numerators.
-2p+2q+\frac{5}{2}-p
Add -1 and 6 to get 5.
-3p+2q+\frac{5}{2}
Combine -2p and -p to get -3p.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}