Evaluate
-a\left(12a-7\right)
Expand
7a-12a^{2}
Share
Copied to clipboard
\frac{\frac{-\left(\left(-\frac{1}{4}\right)^{2}a^{2}b^{2}\left(-2b\right)^{3}+\frac{1}{6}ab^{5}\right)}{-\frac{1}{3}b^{5}}-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
Expand \left(-\frac{1}{4}ab\right)^{2}.
\frac{\frac{-\left(\frac{1}{16}a^{2}b^{2}\left(-2b\right)^{3}+\frac{1}{6}ab^{5}\right)}{-\frac{1}{3}b^{5}}-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
Calculate -\frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{\frac{-\left(\frac{1}{16}a^{2}b^{2}\left(-2\right)^{3}b^{3}+\frac{1}{6}ab^{5}\right)}{-\frac{1}{3}b^{5}}-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
Expand \left(-2b\right)^{3}.
\frac{\frac{-\left(\frac{1}{16}a^{2}b^{2}\left(-8\right)b^{3}+\frac{1}{6}ab^{5}\right)}{-\frac{1}{3}b^{5}}-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
Calculate -2 to the power of 3 and get -8.
\frac{\frac{-\left(-\frac{1}{2}a^{2}b^{2}b^{3}+\frac{1}{6}ab^{5}\right)}{-\frac{1}{3}b^{5}}-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
Multiply \frac{1}{16} and -8 to get -\frac{1}{2}.
\frac{\frac{-\left(-\frac{1}{2}a^{2}b^{5}+\frac{1}{6}ab^{5}\right)}{-\frac{1}{3}b^{5}}-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{\frac{\frac{1}{2}a^{2}b^{5}-\frac{1}{6}ab^{5}}{-\frac{1}{3}b^{5}}-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
To find the opposite of -\frac{1}{2}a^{2}b^{5}+\frac{1}{6}ab^{5}, find the opposite of each term.
\frac{\frac{\frac{1}{6}a\left(3a-1\right)b^{5}}{-\frac{1}{3}b^{5}}-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
Factor the expressions that are not already factored in \frac{\frac{1}{2}a^{2}b^{5}-\frac{1}{6}ab^{5}}{-\frac{1}{3}b^{5}}.
\frac{\frac{\frac{1}{6}a\left(3a-1\right)}{-\frac{1}{3}}-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
Cancel out b^{5} in both numerator and denominator.
\frac{-\frac{1}{2}a\left(3a-1\right)-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
Divide \frac{1}{6}a\left(3a-1\right) by -\frac{1}{3} to get -\frac{1}{2}a\left(3a-1\right).
\frac{\frac{1}{2}\left(-12a+7\right)a^{2}}{\frac{1}{2}a}
Factor the expressions that are not already factored.
\frac{\frac{1}{2}a\left(-12a+7\right)}{\frac{1}{2}}
Cancel out a in both numerator and denominator.
\frac{a\left(-12a+7\right)}{\left(\frac{1}{2}\right)^{0}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
-12a^{2}+7a
Expand the expression.
\frac{\frac{-\left(\left(-\frac{1}{4}\right)^{2}a^{2}b^{2}\left(-2b\right)^{3}+\frac{1}{6}ab^{5}\right)}{-\frac{1}{3}b^{5}}-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
Expand \left(-\frac{1}{4}ab\right)^{2}.
\frac{\frac{-\left(\frac{1}{16}a^{2}b^{2}\left(-2b\right)^{3}+\frac{1}{6}ab^{5}\right)}{-\frac{1}{3}b^{5}}-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
Calculate -\frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{\frac{-\left(\frac{1}{16}a^{2}b^{2}\left(-2\right)^{3}b^{3}+\frac{1}{6}ab^{5}\right)}{-\frac{1}{3}b^{5}}-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
Expand \left(-2b\right)^{3}.
\frac{\frac{-\left(\frac{1}{16}a^{2}b^{2}\left(-8\right)b^{3}+\frac{1}{6}ab^{5}\right)}{-\frac{1}{3}b^{5}}-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
Calculate -2 to the power of 3 and get -8.
\frac{\frac{-\left(-\frac{1}{2}a^{2}b^{2}b^{3}+\frac{1}{6}ab^{5}\right)}{-\frac{1}{3}b^{5}}-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
Multiply \frac{1}{16} and -8 to get -\frac{1}{2}.
\frac{\frac{-\left(-\frac{1}{2}a^{2}b^{5}+\frac{1}{6}ab^{5}\right)}{-\frac{1}{3}b^{5}}-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{\frac{\frac{1}{2}a^{2}b^{5}-\frac{1}{6}ab^{5}}{-\frac{1}{3}b^{5}}-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
To find the opposite of -\frac{1}{2}a^{2}b^{5}+\frac{1}{6}ab^{5}, find the opposite of each term.
\frac{\frac{\frac{1}{6}a\left(3a-1\right)b^{5}}{-\frac{1}{3}b^{5}}-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
Factor the expressions that are not already factored in \frac{\frac{1}{2}a^{2}b^{5}-\frac{1}{6}ab^{5}}{-\frac{1}{3}b^{5}}.
\frac{\frac{\frac{1}{6}a\left(3a-1\right)}{-\frac{1}{3}}-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
Cancel out b^{5} in both numerator and denominator.
\frac{-\frac{1}{2}a\left(3a-1\right)-2a\left(3a^{2}-\frac{5}{2}a+\frac{1}{4}\right)}{\frac{1}{2}a}
Divide \frac{1}{6}a\left(3a-1\right) by -\frac{1}{3} to get -\frac{1}{2}a\left(3a-1\right).
\frac{\frac{1}{2}\left(-12a+7\right)a^{2}}{\frac{1}{2}a}
Factor the expressions that are not already factored.
\frac{\frac{1}{2}a\left(-12a+7\right)}{\frac{1}{2}}
Cancel out a in both numerator and denominator.
\frac{a\left(-12a+7\right)}{\left(\frac{1}{2}\right)^{0}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
-12a^{2}+7a
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}