Evaluate
\frac{56}{39}\approx 1.435897436
Factor
\frac{7 \cdot 2 ^ {3}}{3 \cdot 13} = 1\frac{17}{39} = 1.435897435897436
Share
Copied to clipboard
\frac{\left(3.4-\frac{8+3}{8}\right)\times \frac{2\times 3+2}{3}-\frac{2\times 3+2}{3}+1}{2.6}
Multiply 1 and 8 to get 8.
\frac{\left(3.4-\frac{11}{8}\right)\times \frac{2\times 3+2}{3}-\frac{2\times 3+2}{3}+1}{2.6}
Add 8 and 3 to get 11.
\frac{\left(\frac{17}{5}-\frac{11}{8}\right)\times \frac{2\times 3+2}{3}-\frac{2\times 3+2}{3}+1}{2.6}
Convert decimal number 3.4 to fraction \frac{34}{10}. Reduce the fraction \frac{34}{10} to lowest terms by extracting and canceling out 2.
\frac{\left(\frac{136}{40}-\frac{55}{40}\right)\times \frac{2\times 3+2}{3}-\frac{2\times 3+2}{3}+1}{2.6}
Least common multiple of 5 and 8 is 40. Convert \frac{17}{5} and \frac{11}{8} to fractions with denominator 40.
\frac{\frac{136-55}{40}\times \frac{2\times 3+2}{3}-\frac{2\times 3+2}{3}+1}{2.6}
Since \frac{136}{40} and \frac{55}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{81}{40}\times \frac{2\times 3+2}{3}-\frac{2\times 3+2}{3}+1}{2.6}
Subtract 55 from 136 to get 81.
\frac{\frac{81}{40}\times \frac{6+2}{3}-\frac{2\times 3+2}{3}+1}{2.6}
Multiply 2 and 3 to get 6.
\frac{\frac{81}{40}\times \frac{8}{3}-\frac{2\times 3+2}{3}+1}{2.6}
Add 6 and 2 to get 8.
\frac{\frac{81\times 8}{40\times 3}-\frac{2\times 3+2}{3}+1}{2.6}
Multiply \frac{81}{40} times \frac{8}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{648}{120}-\frac{2\times 3+2}{3}+1}{2.6}
Do the multiplications in the fraction \frac{81\times 8}{40\times 3}.
\frac{\frac{27}{5}-\frac{2\times 3+2}{3}+1}{2.6}
Reduce the fraction \frac{648}{120} to lowest terms by extracting and canceling out 24.
\frac{\frac{27}{5}-\frac{6+2}{3}+1}{2.6}
Multiply 2 and 3 to get 6.
\frac{\frac{27}{5}-\frac{8}{3}+1}{2.6}
Add 6 and 2 to get 8.
\frac{\frac{81}{15}-\frac{40}{15}+1}{2.6}
Least common multiple of 5 and 3 is 15. Convert \frac{27}{5} and \frac{8}{3} to fractions with denominator 15.
\frac{\frac{81-40}{15}+1}{2.6}
Since \frac{81}{15} and \frac{40}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{41}{15}+1}{2.6}
Subtract 40 from 81 to get 41.
\frac{\frac{41}{15}+\frac{15}{15}}{2.6}
Convert 1 to fraction \frac{15}{15}.
\frac{\frac{41+15}{15}}{2.6}
Since \frac{41}{15} and \frac{15}{15} have the same denominator, add them by adding their numerators.
\frac{\frac{56}{15}}{2.6}
Add 41 and 15 to get 56.
\frac{56}{15\times 2.6}
Express \frac{\frac{56}{15}}{2.6} as a single fraction.
\frac{56}{39}
Multiply 15 and 2.6 to get 39.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}