Evaluate
-2yx^{4}
Expand
-2yx^{4}
Share
Copied to clipboard
\frac{\frac{\left(-2\right)^{4}\left(x^{3}\right)^{4}y^{4}}{\frac{1}{2}xy\left(-4y\right)^{2}}}{\left(-x\right)^{7}}
Expand \left(-2x^{3}y\right)^{4}.
\frac{\frac{\left(-2\right)^{4}x^{12}y^{4}}{\frac{1}{2}xy\left(-4y\right)^{2}}}{\left(-x\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\frac{\frac{16x^{12}y^{4}}{\frac{1}{2}xy\left(-4y\right)^{2}}}{\left(-x\right)^{7}}
Calculate -2 to the power of 4 and get 16.
\frac{\frac{16x^{12}y^{4}}{\frac{1}{2}xy\left(-4\right)^{2}y^{2}}}{\left(-x\right)^{7}}
Expand \left(-4y\right)^{2}.
\frac{\frac{16x^{12}y^{4}}{\frac{1}{2}xy\times 16y^{2}}}{\left(-x\right)^{7}}
Calculate -4 to the power of 2 and get 16.
\frac{\frac{16x^{12}y^{4}}{8xyy^{2}}}{\left(-x\right)^{7}}
Multiply \frac{1}{2} and 16 to get 8.
\frac{\frac{16x^{12}y^{4}}{8xy^{3}}}{\left(-x\right)^{7}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{2yx^{11}}{\left(-x\right)^{7}}
Cancel out 8xy^{3} in both numerator and denominator.
\frac{2yx^{11}}{\left(-1\right)^{7}x^{7}}
Expand \left(-x\right)^{7}.
\frac{2yx^{11}}{-x^{7}}
Calculate -1 to the power of 7 and get -1.
\frac{2yx^{4}}{-1}
Cancel out x^{7} in both numerator and denominator.
-2yx^{4}
Anything divided by -1 gives its opposite.
\frac{\frac{\left(-2\right)^{4}\left(x^{3}\right)^{4}y^{4}}{\frac{1}{2}xy\left(-4y\right)^{2}}}{\left(-x\right)^{7}}
Expand \left(-2x^{3}y\right)^{4}.
\frac{\frac{\left(-2\right)^{4}x^{12}y^{4}}{\frac{1}{2}xy\left(-4y\right)^{2}}}{\left(-x\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\frac{\frac{16x^{12}y^{4}}{\frac{1}{2}xy\left(-4y\right)^{2}}}{\left(-x\right)^{7}}
Calculate -2 to the power of 4 and get 16.
\frac{\frac{16x^{12}y^{4}}{\frac{1}{2}xy\left(-4\right)^{2}y^{2}}}{\left(-x\right)^{7}}
Expand \left(-4y\right)^{2}.
\frac{\frac{16x^{12}y^{4}}{\frac{1}{2}xy\times 16y^{2}}}{\left(-x\right)^{7}}
Calculate -4 to the power of 2 and get 16.
\frac{\frac{16x^{12}y^{4}}{8xyy^{2}}}{\left(-x\right)^{7}}
Multiply \frac{1}{2} and 16 to get 8.
\frac{\frac{16x^{12}y^{4}}{8xy^{3}}}{\left(-x\right)^{7}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{2yx^{11}}{\left(-x\right)^{7}}
Cancel out 8xy^{3} in both numerator and denominator.
\frac{2yx^{11}}{\left(-1\right)^{7}x^{7}}
Expand \left(-x\right)^{7}.
\frac{2yx^{11}}{-x^{7}}
Calculate -1 to the power of 7 and get -1.
\frac{2yx^{4}}{-1}
Cancel out x^{7} in both numerator and denominator.
-2yx^{4}
Anything divided by -1 gives its opposite.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}