Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\left(-2\right)^{4}\left(x^{3}\right)^{4}y^{4}}{\frac{1}{2}xy\left(-4y\right)^{2}}}{\left(-x\right)^{7}}
Expand \left(-2x^{3}y\right)^{4}.
\frac{\frac{\left(-2\right)^{4}x^{12}y^{4}}{\frac{1}{2}xy\left(-4y\right)^{2}}}{\left(-x\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\frac{\frac{16x^{12}y^{4}}{\frac{1}{2}xy\left(-4y\right)^{2}}}{\left(-x\right)^{7}}
Calculate -2 to the power of 4 and get 16.
\frac{\frac{16x^{12}y^{4}}{\frac{1}{2}xy\left(-4\right)^{2}y^{2}}}{\left(-x\right)^{7}}
Expand \left(-4y\right)^{2}.
\frac{\frac{16x^{12}y^{4}}{\frac{1}{2}xy\times 16y^{2}}}{\left(-x\right)^{7}}
Calculate -4 to the power of 2 and get 16.
\frac{\frac{16x^{12}y^{4}}{8xyy^{2}}}{\left(-x\right)^{7}}
Multiply \frac{1}{2} and 16 to get 8.
\frac{\frac{16x^{12}y^{4}}{8xy^{3}}}{\left(-x\right)^{7}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{2yx^{11}}{\left(-x\right)^{7}}
Cancel out 8xy^{3} in both numerator and denominator.
\frac{2yx^{11}}{\left(-1\right)^{7}x^{7}}
Expand \left(-x\right)^{7}.
\frac{2yx^{11}}{-x^{7}}
Calculate -1 to the power of 7 and get -1.
\frac{2yx^{4}}{-1}
Cancel out x^{7} in both numerator and denominator.
-2yx^{4}
Anything divided by -1 gives its opposite.
\frac{\frac{\left(-2\right)^{4}\left(x^{3}\right)^{4}y^{4}}{\frac{1}{2}xy\left(-4y\right)^{2}}}{\left(-x\right)^{7}}
Expand \left(-2x^{3}y\right)^{4}.
\frac{\frac{\left(-2\right)^{4}x^{12}y^{4}}{\frac{1}{2}xy\left(-4y\right)^{2}}}{\left(-x\right)^{7}}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\frac{\frac{16x^{12}y^{4}}{\frac{1}{2}xy\left(-4y\right)^{2}}}{\left(-x\right)^{7}}
Calculate -2 to the power of 4 and get 16.
\frac{\frac{16x^{12}y^{4}}{\frac{1}{2}xy\left(-4\right)^{2}y^{2}}}{\left(-x\right)^{7}}
Expand \left(-4y\right)^{2}.
\frac{\frac{16x^{12}y^{4}}{\frac{1}{2}xy\times 16y^{2}}}{\left(-x\right)^{7}}
Calculate -4 to the power of 2 and get 16.
\frac{\frac{16x^{12}y^{4}}{8xyy^{2}}}{\left(-x\right)^{7}}
Multiply \frac{1}{2} and 16 to get 8.
\frac{\frac{16x^{12}y^{4}}{8xy^{3}}}{\left(-x\right)^{7}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{2yx^{11}}{\left(-x\right)^{7}}
Cancel out 8xy^{3} in both numerator and denominator.
\frac{2yx^{11}}{\left(-1\right)^{7}x^{7}}
Expand \left(-x\right)^{7}.
\frac{2yx^{11}}{-x^{7}}
Calculate -1 to the power of 7 and get -1.
\frac{2yx^{4}}{-1}
Cancel out x^{7} in both numerator and denominator.
-2yx^{4}
Anything divided by -1 gives its opposite.