\{ \sin \alpha + \sin \beta = 1
Solve for α, β (complex solution)
\alpha =2\pi n_{1}+i\ln(2)+\left(-i\right)\ln(2i+\left(-1\right)e^{i\beta }+e^{\left(-i\right)\beta }+\left(-1\right)\left(\left(\left(-1\right)e^{i\beta }+e^{\left(-i\right)\beta }\right)\left(\left(-1\right)e^{i\beta }+e^{\left(-i\right)\beta }+4i\right)\right)^{\frac{1}{2}})\text{, }n_{1}\in \mathrm{Z}\text{, }\beta \in \mathrm{C}
\alpha =2\pi n_{2}+i\ln(2)+\left(-i\right)\ln(2i+\left(-1\right)e^{i\beta }+e^{\left(-i\right)\beta }+\left(\left(\left(-1\right)e^{i\beta }+e^{\left(-i\right)\beta }\right)\left(\left(-1\right)e^{i\beta }+e^{\left(-i\right)\beta }+4i\right)\right)^{\frac{1}{2}})\text{, }n_{2}\in \mathrm{Z}\text{, }\beta \in \mathrm{C}
Solve for α, β
\alpha =arcSin(\left(-1\right)SinI(\beta )+1)+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}\text{, }\beta \in \begin{bmatrix}2n_{20}\pi ,2\pi n_{20}+\pi \end{bmatrix}\text{, }n_{20}\in \mathrm{Z}\text{; }\alpha =\pi +2\pi n_{2}+\left(-1\right)arcSin(\left(-1\right)SinI(\beta )+1)\text{, }n_{2}\in \mathrm{Z}\text{, }\beta \in \begin{bmatrix}2n_{20}\pi ,2\pi n_{20}+\pi \end{bmatrix}\text{, }n_{20}\in \mathrm{Z}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}