\{ \frac { x - 2 } { 4 } + \frac { 3 y + 1 } { 3 } + \frac { 7 } { 6 } = 0
Solve for x
x=-4y-4
Graph
Share
Copied to clipboard
3\left(x-2\right)+4\left(3y+1\right)+14=0
Multiply both sides of the equation by 12, the least common multiple of 4,3,6.
3x-6+4\left(3y+1\right)+14=0
Use the distributive property to multiply 3 by x-2.
3x-6+12y+4+14=0
Use the distributive property to multiply 4 by 3y+1.
3x-2+12y+14=0
Add -6 and 4 to get -2.
3x+12+12y=0
Add -2 and 14 to get 12.
3x+12y=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
3x=-12-12y
Subtract 12y from both sides.
3x=-12y-12
The equation is in standard form.
\frac{3x}{3}=\frac{-12y-12}{3}
Divide both sides by 3.
x=\frac{-12y-12}{3}
Dividing by 3 undoes the multiplication by 3.
x=-4y-4
Divide -12-12y by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}