Evaluate
\frac{7}{30}\approx 0.233333333
Factor
\frac{7}{2 \cdot 3 \cdot 5} = 0.23333333333333334
Share
Copied to clipboard
\frac{7}{5}\left(-\frac{1}{4}\right)+\frac{7}{5}\times \frac{5}{12}
Reduce the fraction \frac{-3}{12} to lowest terms by extracting and canceling out 3.
\frac{7\left(-1\right)}{5\times 4}+\frac{7}{5}\times \frac{5}{12}
Multiply \frac{7}{5} times -\frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{-7}{20}+\frac{7}{5}\times \frac{5}{12}
Do the multiplications in the fraction \frac{7\left(-1\right)}{5\times 4}.
-\frac{7}{20}+\frac{7}{5}\times \frac{5}{12}
Fraction \frac{-7}{20} can be rewritten as -\frac{7}{20} by extracting the negative sign.
-\frac{7}{20}+\frac{7\times 5}{5\times 12}
Multiply \frac{7}{5} times \frac{5}{12} by multiplying numerator times numerator and denominator times denominator.
-\frac{7}{20}+\frac{7}{12}
Cancel out 5 in both numerator and denominator.
-\frac{21}{60}+\frac{35}{60}
Least common multiple of 20 and 12 is 60. Convert -\frac{7}{20} and \frac{7}{12} to fractions with denominator 60.
\frac{-21+35}{60}
Since -\frac{21}{60} and \frac{35}{60} have the same denominator, add them by adding their numerators.
\frac{14}{60}
Add -21 and 35 to get 14.
\frac{7}{30}
Reduce the fraction \frac{14}{60} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}