\{ \frac { 4 x - y } { 5 } - \frac { x - 2 y + 1 } { 4 } = - \frac { 13 } { 10 }
Solve for x
x=\frac{-6y-21}{11}
Graph
Share
Copied to clipboard
4\left(4x-y\right)-5\left(x-2y+1\right)=-26
Multiply both sides of the equation by 20, the least common multiple of 5,4,10.
16x-4y-5\left(x-2y+1\right)=-26
Use the distributive property to multiply 4 by 4x-y.
16x-4y-5x+10y-5=-26
Use the distributive property to multiply -5 by x-2y+1.
11x-4y+10y-5=-26
Combine 16x and -5x to get 11x.
11x+6y-5=-26
Combine -4y and 10y to get 6y.
11x-5=-26-6y
Subtract 6y from both sides.
11x=-26-6y+5
Add 5 to both sides.
11x=-21-6y
Add -26 and 5 to get -21.
11x=-6y-21
The equation is in standard form.
\frac{11x}{11}=\frac{-6y-21}{11}
Divide both sides by 11.
x=\frac{-6y-21}{11}
Dividing by 11 undoes the multiplication by 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}