Skip to main content
Differentiate w.r.t. n
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(n^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}n}(3n^{1})-3n^{1}\frac{\mathrm{d}}{\mathrm{d}n}(n^{1}+2)}{\left(n^{1}+2\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(n^{1}+2\right)\times 3n^{1-1}-3n^{1}n^{1-1}}{\left(n^{1}+2\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(n^{1}+2\right)\times 3n^{0}-3n^{1}n^{0}}{\left(n^{1}+2\right)^{2}}
Do the arithmetic.
\frac{n^{1}\times 3n^{0}+2\times 3n^{0}-3n^{1}n^{0}}{\left(n^{1}+2\right)^{2}}
Expand using distributive property.
\frac{3n^{1}+2\times 3n^{0}-3n^{1}}{\left(n^{1}+2\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{3n^{1}+6n^{0}-3n^{1}}{\left(n^{1}+2\right)^{2}}
Do the arithmetic.
\frac{\left(3-3\right)n^{1}+6n^{0}}{\left(n^{1}+2\right)^{2}}
Combine like terms.
\frac{6n^{0}}{\left(n^{1}+2\right)^{2}}
Subtract 3 from 3.
\frac{6n^{0}}{\left(n+2\right)^{2}}
For any term t, t^{1}=t.
\frac{6\times 1}{\left(n+2\right)^{2}}
For any term t except 0, t^{0}=1.
\frac{6}{\left(n+2\right)^{2}}
For any term t, t\times 1=t and 1t=t.