Evaluate
5
Factor
5
Share
Copied to clipboard
\frac{\frac{15}{5}+\frac{3}{5}}{1+\frac{1}{5}}\left(\frac{3}{2}-\frac{1}{3}\right)+\sqrt{2+\frac{1}{4}}
Convert 3 to fraction \frac{15}{5}.
\frac{\frac{15+3}{5}}{1+\frac{1}{5}}\left(\frac{3}{2}-\frac{1}{3}\right)+\sqrt{2+\frac{1}{4}}
Since \frac{15}{5} and \frac{3}{5} have the same denominator, add them by adding their numerators.
\frac{\frac{18}{5}}{1+\frac{1}{5}}\left(\frac{3}{2}-\frac{1}{3}\right)+\sqrt{2+\frac{1}{4}}
Add 15 and 3 to get 18.
\frac{\frac{18}{5}}{\frac{5}{5}+\frac{1}{5}}\left(\frac{3}{2}-\frac{1}{3}\right)+\sqrt{2+\frac{1}{4}}
Convert 1 to fraction \frac{5}{5}.
\frac{\frac{18}{5}}{\frac{5+1}{5}}\left(\frac{3}{2}-\frac{1}{3}\right)+\sqrt{2+\frac{1}{4}}
Since \frac{5}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
\frac{\frac{18}{5}}{\frac{6}{5}}\left(\frac{3}{2}-\frac{1}{3}\right)+\sqrt{2+\frac{1}{4}}
Add 5 and 1 to get 6.
\frac{18}{5}\times \frac{5}{6}\left(\frac{3}{2}-\frac{1}{3}\right)+\sqrt{2+\frac{1}{4}}
Divide \frac{18}{5} by \frac{6}{5} by multiplying \frac{18}{5} by the reciprocal of \frac{6}{5}.
\frac{18\times 5}{5\times 6}\left(\frac{3}{2}-\frac{1}{3}\right)+\sqrt{2+\frac{1}{4}}
Multiply \frac{18}{5} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{18}{6}\left(\frac{3}{2}-\frac{1}{3}\right)+\sqrt{2+\frac{1}{4}}
Cancel out 5 in both numerator and denominator.
3\left(\frac{3}{2}-\frac{1}{3}\right)+\sqrt{2+\frac{1}{4}}
Divide 18 by 6 to get 3.
3\left(\frac{9}{6}-\frac{2}{6}\right)+\sqrt{2+\frac{1}{4}}
Least common multiple of 2 and 3 is 6. Convert \frac{3}{2} and \frac{1}{3} to fractions with denominator 6.
3\times \frac{9-2}{6}+\sqrt{2+\frac{1}{4}}
Since \frac{9}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
3\times \frac{7}{6}+\sqrt{2+\frac{1}{4}}
Subtract 2 from 9 to get 7.
\frac{3\times 7}{6}+\sqrt{2+\frac{1}{4}}
Express 3\times \frac{7}{6} as a single fraction.
\frac{21}{6}+\sqrt{2+\frac{1}{4}}
Multiply 3 and 7 to get 21.
\frac{7}{2}+\sqrt{2+\frac{1}{4}}
Reduce the fraction \frac{21}{6} to lowest terms by extracting and canceling out 3.
\frac{7}{2}+\sqrt{\frac{8}{4}+\frac{1}{4}}
Convert 2 to fraction \frac{8}{4}.
\frac{7}{2}+\sqrt{\frac{8+1}{4}}
Since \frac{8}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{7}{2}+\sqrt{\frac{9}{4}}
Add 8 and 1 to get 9.
\frac{7}{2}+\frac{3}{2}
Rewrite the square root of the division \frac{9}{4} as the division of square roots \frac{\sqrt{9}}{\sqrt{4}}. Take the square root of both numerator and denominator.
\frac{7+3}{2}
Since \frac{7}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{10}{2}
Add 7 and 3 to get 10.
5
Divide 10 by 2 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}