Solve for x
x=-2
Graph
Share
Copied to clipboard
15\left(\frac{2}{3}x-\left(\frac{3-4x}{5}-\frac{4x^{2}-3}{3}+\frac{\left(2x+3\right)^{2}}{3}\right)\right)+15x=-23
Multiply both sides of the equation by 15, the least common multiple of 3,5,15.
15\left(\frac{2}{3}x-\left(\frac{3-4x}{5}-\frac{4x^{2}-3}{3}+\frac{4x^{2}+12x+9}{3}\right)\right)+15x=-23
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
15\left(\frac{2}{3}x-\left(\frac{3\left(3-4x\right)}{15}-\frac{5\left(4x^{2}-3\right)}{15}+\frac{4x^{2}+12x+9}{3}\right)\right)+15x=-23
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 3 is 15. Multiply \frac{3-4x}{5} times \frac{3}{3}. Multiply \frac{4x^{2}-3}{3} times \frac{5}{5}.
15\left(\frac{2}{3}x-\left(\frac{3\left(3-4x\right)-5\left(4x^{2}-3\right)}{15}+\frac{4x^{2}+12x+9}{3}\right)\right)+15x=-23
Since \frac{3\left(3-4x\right)}{15} and \frac{5\left(4x^{2}-3\right)}{15} have the same denominator, subtract them by subtracting their numerators.
15\left(\frac{2}{3}x-\left(\frac{9-12x-20x^{2}+15}{15}+\frac{4x^{2}+12x+9}{3}\right)\right)+15x=-23
Do the multiplications in 3\left(3-4x\right)-5\left(4x^{2}-3\right).
15\left(\frac{2}{3}x-\left(\frac{24-12x-20x^{2}}{15}+\frac{4x^{2}+12x+9}{3}\right)\right)+15x=-23
Combine like terms in 9-12x-20x^{2}+15.
15\left(\frac{2}{3}x-\left(\frac{24-12x-20x^{2}}{15}+\frac{5\left(4x^{2}+12x+9\right)}{15}\right)\right)+15x=-23
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 15 and 3 is 15. Multiply \frac{4x^{2}+12x+9}{3} times \frac{5}{5}.
15\left(\frac{2}{3}x-\frac{24-12x-20x^{2}+5\left(4x^{2}+12x+9\right)}{15}\right)+15x=-23
Since \frac{24-12x-20x^{2}}{15} and \frac{5\left(4x^{2}+12x+9\right)}{15} have the same denominator, add them by adding their numerators.
15\left(\frac{2}{3}x-\frac{24-12x-20x^{2}+20x^{2}+60x+45}{15}\right)+15x=-23
Do the multiplications in 24-12x-20x^{2}+5\left(4x^{2}+12x+9\right).
15\left(\frac{2}{3}x-\frac{69+48x}{15}\right)+15x=-23
Combine like terms in 24-12x-20x^{2}+20x^{2}+60x+45.
10x+15\left(-\frac{69+48x}{15}\right)+15x=-23
Use the distributive property to multiply 15 by \frac{2}{3}x-\frac{69+48x}{15}.
10x+\frac{-15\left(69+48x\right)}{15}+15x=-23
Express 15\left(-\frac{69+48x}{15}\right) as a single fraction.
10x-\left(69+48x\right)+15x=-23
Cancel out 15 and 15.
10x-69-48x+15x=-23
To find the opposite of 69+48x, find the opposite of each term.
-38x-69+15x=-23
Combine 10x and -48x to get -38x.
-23x-69=-23
Combine -38x and 15x to get -23x.
-23x=-23+69
Add 69 to both sides.
-23x=46
Add -23 and 69 to get 46.
x=\frac{46}{-23}
Divide both sides by -23.
x=-2
Divide 46 by -23 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}