Evaluate
-\frac{161}{51}\approx -3.156862745
Factor
-\frac{161}{51} = -3\frac{8}{51} = -3.156862745098039
Share
Copied to clipboard
\frac{2}{3}+\frac{\frac{5+8}{3}}{\frac{2}{3}-\frac{9}{5}}
Since \frac{5}{3} and \frac{8}{3} have the same denominator, add them by adding their numerators.
\frac{2}{3}+\frac{\frac{13}{3}}{\frac{2}{3}-\frac{9}{5}}
Add 5 and 8 to get 13.
\frac{2}{3}+\frac{\frac{13}{3}}{\frac{10}{15}-\frac{27}{15}}
Least common multiple of 3 and 5 is 15. Convert \frac{2}{3} and \frac{9}{5} to fractions with denominator 15.
\frac{2}{3}+\frac{\frac{13}{3}}{\frac{10-27}{15}}
Since \frac{10}{15} and \frac{27}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}+\frac{\frac{13}{3}}{-\frac{17}{15}}
Subtract 27 from 10 to get -17.
\frac{2}{3}+\frac{13}{3}\left(-\frac{15}{17}\right)
Divide \frac{13}{3} by -\frac{17}{15} by multiplying \frac{13}{3} by the reciprocal of -\frac{17}{15}.
\frac{2}{3}+\frac{13\left(-15\right)}{3\times 17}
Multiply \frac{13}{3} times -\frac{15}{17} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}+\frac{-195}{51}
Do the multiplications in the fraction \frac{13\left(-15\right)}{3\times 17}.
\frac{2}{3}-\frac{65}{17}
Reduce the fraction \frac{-195}{51} to lowest terms by extracting and canceling out 3.
\frac{34}{51}-\frac{195}{51}
Least common multiple of 3 and 17 is 51. Convert \frac{2}{3} and \frac{65}{17} to fractions with denominator 51.
\frac{34-195}{51}
Since \frac{34}{51} and \frac{195}{51} have the same denominator, subtract them by subtracting their numerators.
-\frac{161}{51}
Subtract 195 from 34 to get -161.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}