\{ \frac { 120000 } { x } = \frac { 1000 } { y + 5 }
Solve for x
x=120\left(y+5\right)
y\neq -5
Graph
Share
Copied to clipboard
\left(y+5\right)\times 120000=x\times 1000
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x\left(y+5\right), the least common multiple of x,y+5.
120000y+600000=x\times 1000
Use the distributive property to multiply y+5 by 120000.
x\times 1000=120000y+600000
Swap sides so that all variable terms are on the left hand side.
1000x=120000y+600000
The equation is in standard form.
\frac{1000x}{1000}=\frac{120000y+600000}{1000}
Divide both sides by 1000.
x=\frac{120000y+600000}{1000}
Dividing by 1000 undoes the multiplication by 1000.
x=120y+600
Divide 600000+120000y by 1000.
x=120y+600\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}