Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{1}{5}-\frac{80}{51}\left(\frac{1-\frac{7}{25}}{\frac{27}{20}}-\frac{1}{4}\right)\right)\times 9}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Divide \frac{\frac{1}{5}-\frac{80}{51}\left(\frac{1-\frac{7}{25}}{\frac{27}{20}}-\frac{1}{4}\right)}{\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}} by \frac{55}{9} by multiplying \frac{\frac{1}{5}-\frac{80}{51}\left(\frac{1-\frac{7}{25}}{\frac{27}{20}}-\frac{1}{4}\right)}{\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}} by the reciprocal of \frac{55}{9}.
\frac{\left(\frac{1}{5}-\frac{80}{51}\left(\frac{\frac{25}{25}-\frac{7}{25}}{\frac{27}{20}}-\frac{1}{4}\right)\right)\times 9}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Convert 1 to fraction \frac{25}{25}.
\frac{\left(\frac{1}{5}-\frac{80}{51}\left(\frac{\frac{25-7}{25}}{\frac{27}{20}}-\frac{1}{4}\right)\right)\times 9}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Since \frac{25}{25} and \frac{7}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\frac{1}{5}-\frac{80}{51}\left(\frac{\frac{18}{25}}{\frac{27}{20}}-\frac{1}{4}\right)\right)\times 9}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Subtract 7 from 25 to get 18.
\frac{\left(\frac{1}{5}-\frac{80}{51}\left(\frac{18}{25}\times \frac{20}{27}-\frac{1}{4}\right)\right)\times 9}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Divide \frac{18}{25} by \frac{27}{20} by multiplying \frac{18}{25} by the reciprocal of \frac{27}{20}.
\frac{\left(\frac{1}{5}-\frac{80}{51}\left(\frac{18\times 20}{25\times 27}-\frac{1}{4}\right)\right)\times 9}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Multiply \frac{18}{25} times \frac{20}{27} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\frac{1}{5}-\frac{80}{51}\left(\frac{360}{675}-\frac{1}{4}\right)\right)\times 9}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Do the multiplications in the fraction \frac{18\times 20}{25\times 27}.
\frac{\left(\frac{1}{5}-\frac{80}{51}\left(\frac{8}{15}-\frac{1}{4}\right)\right)\times 9}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Reduce the fraction \frac{360}{675} to lowest terms by extracting and canceling out 45.
\frac{\left(\frac{1}{5}-\frac{80}{51}\left(\frac{32}{60}-\frac{15}{60}\right)\right)\times 9}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Least common multiple of 15 and 4 is 60. Convert \frac{8}{15} and \frac{1}{4} to fractions with denominator 60.
\frac{\left(\frac{1}{5}-\frac{80}{51}\times \frac{32-15}{60}\right)\times 9}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Since \frac{32}{60} and \frac{15}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\frac{1}{5}-\frac{80}{51}\times \frac{17}{60}\right)\times 9}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Subtract 15 from 32 to get 17.
\frac{\left(\frac{1}{5}-\frac{80\times 17}{51\times 60}\right)\times 9}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Multiply \frac{80}{51} times \frac{17}{60} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\frac{1}{5}-\frac{1360}{3060}\right)\times 9}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Do the multiplications in the fraction \frac{80\times 17}{51\times 60}.
\frac{\left(\frac{1}{5}-\frac{4}{9}\right)\times 9}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Reduce the fraction \frac{1360}{3060} to lowest terms by extracting and canceling out 340.
\frac{\left(\frac{9}{45}-\frac{20}{45}\right)\times 9}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Least common multiple of 5 and 9 is 45. Convert \frac{1}{5} and \frac{4}{9} to fractions with denominator 45.
\frac{\frac{9-20}{45}\times 9}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Since \frac{9}{45} and \frac{20}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{11}{45}\times 9}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Subtract 20 from 9 to get -11.
\frac{\frac{-11\times 9}{45}}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Express -\frac{11}{45}\times 9 as a single fraction.
\frac{\frac{-99}{45}}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Multiply -11 and 9 to get -99.
\frac{-\frac{11}{5}}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{1}{6}\right)}{\frac{10}{40}}\right)\times 55}
Reduce the fraction \frac{-99}{45} to lowest terms by extracting and canceling out 9.
\frac{-\frac{11}{5}}{\left(\frac{3}{5}-\frac{\frac{25}{14}\left(\frac{7}{30}-\frac{5}{30}\right)}{\frac{10}{40}}\right)\times 55}
Least common multiple of 30 and 6 is 30. Convert \frac{7}{30} and \frac{1}{6} to fractions with denominator 30.
\frac{-\frac{11}{5}}{\left(\frac{3}{5}-\frac{\frac{25}{14}\times \frac{7-5}{30}}{\frac{10}{40}}\right)\times 55}
Since \frac{7}{30} and \frac{5}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{11}{5}}{\left(\frac{3}{5}-\frac{\frac{25}{14}\times \frac{2}{30}}{\frac{10}{40}}\right)\times 55}
Subtract 5 from 7 to get 2.
\frac{-\frac{11}{5}}{\left(\frac{3}{5}-\frac{\frac{25}{14}\times \frac{1}{15}}{\frac{10}{40}}\right)\times 55}
Reduce the fraction \frac{2}{30} to lowest terms by extracting and canceling out 2.
\frac{-\frac{11}{5}}{\left(\frac{3}{5}-\frac{\frac{25\times 1}{14\times 15}}{\frac{10}{40}}\right)\times 55}
Multiply \frac{25}{14} times \frac{1}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{11}{5}}{\left(\frac{3}{5}-\frac{\frac{25}{210}}{\frac{10}{40}}\right)\times 55}
Do the multiplications in the fraction \frac{25\times 1}{14\times 15}.
\frac{-\frac{11}{5}}{\left(\frac{3}{5}-\frac{\frac{5}{42}}{\frac{10}{40}}\right)\times 55}
Reduce the fraction \frac{25}{210} to lowest terms by extracting and canceling out 5.
\frac{-\frac{11}{5}}{\left(\frac{3}{5}-\frac{\frac{5}{42}}{\frac{1}{4}}\right)\times 55}
Reduce the fraction \frac{10}{40} to lowest terms by extracting and canceling out 10.
\frac{-\frac{11}{5}}{\left(\frac{3}{5}-\frac{5}{42}\times 4\right)\times 55}
Divide \frac{5}{42} by \frac{1}{4} by multiplying \frac{5}{42} by the reciprocal of \frac{1}{4}.
\frac{-\frac{11}{5}}{\left(\frac{3}{5}-\frac{5\times 4}{42}\right)\times 55}
Express \frac{5}{42}\times 4 as a single fraction.
\frac{-\frac{11}{5}}{\left(\frac{3}{5}-\frac{20}{42}\right)\times 55}
Multiply 5 and 4 to get 20.
\frac{-\frac{11}{5}}{\left(\frac{3}{5}-\frac{10}{21}\right)\times 55}
Reduce the fraction \frac{20}{42} to lowest terms by extracting and canceling out 2.
\frac{-\frac{11}{5}}{\left(\frac{63}{105}-\frac{50}{105}\right)\times 55}
Least common multiple of 5 and 21 is 105. Convert \frac{3}{5} and \frac{10}{21} to fractions with denominator 105.
\frac{-\frac{11}{5}}{\frac{63-50}{105}\times 55}
Since \frac{63}{105} and \frac{50}{105} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{11}{5}}{\frac{13}{105}\times 55}
Subtract 50 from 63 to get 13.
\frac{-\frac{11}{5}}{\frac{13\times 55}{105}}
Express \frac{13}{105}\times 55 as a single fraction.
\frac{-\frac{11}{5}}{\frac{715}{105}}
Multiply 13 and 55 to get 715.
\frac{-\frac{11}{5}}{\frac{143}{21}}
Reduce the fraction \frac{715}{105} to lowest terms by extracting and canceling out 5.
-\frac{11}{5}\times \frac{21}{143}
Divide -\frac{11}{5} by \frac{143}{21} by multiplying -\frac{11}{5} by the reciprocal of \frac{143}{21}.
\frac{-11\times 21}{5\times 143}
Multiply -\frac{11}{5} times \frac{21}{143} by multiplying numerator times numerator and denominator times denominator.
\frac{-231}{715}
Do the multiplications in the fraction \frac{-11\times 21}{5\times 143}.
-\frac{21}{65}
Reduce the fraction \frac{-231}{715} to lowest terms by extracting and canceling out 11.