Evaluate
\frac{28}{15}\approx 1.866666667
Factor
\frac{7 \cdot 2 ^ {2}}{3 \cdot 5} = 1\frac{13}{15} = 1.8666666666666667
Share
Copied to clipboard
\frac{1}{3}-\frac{1}{2}\left(-\frac{8}{27}\right)\times 9-\frac{\left(-\frac{2}{5}\right)^{2}}{-0.8}
Calculate -\frac{2}{3} to the power of 3 and get -\frac{8}{27}.
\frac{1}{3}-\frac{1\left(-8\right)}{2\times 27}\times 9-\frac{\left(-\frac{2}{5}\right)^{2}}{-0.8}
Multiply \frac{1}{2} times -\frac{8}{27} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}-\frac{-8}{54}\times 9-\frac{\left(-\frac{2}{5}\right)^{2}}{-0.8}
Do the multiplications in the fraction \frac{1\left(-8\right)}{2\times 27}.
\frac{1}{3}-\left(-\frac{4}{27}\times 9\right)-\frac{\left(-\frac{2}{5}\right)^{2}}{-0.8}
Reduce the fraction \frac{-8}{54} to lowest terms by extracting and canceling out 2.
\frac{1}{3}-\frac{-4\times 9}{27}-\frac{\left(-\frac{2}{5}\right)^{2}}{-0.8}
Express -\frac{4}{27}\times 9 as a single fraction.
\frac{1}{3}-\frac{-36}{27}-\frac{\left(-\frac{2}{5}\right)^{2}}{-0.8}
Multiply -4 and 9 to get -36.
\frac{1}{3}-\left(-\frac{4}{3}\right)-\frac{\left(-\frac{2}{5}\right)^{2}}{-0.8}
Reduce the fraction \frac{-36}{27} to lowest terms by extracting and canceling out 9.
\frac{1}{3}+\frac{4}{3}-\frac{\left(-\frac{2}{5}\right)^{2}}{-0.8}
The opposite of -\frac{4}{3} is \frac{4}{3}.
\frac{1+4}{3}-\frac{\left(-\frac{2}{5}\right)^{2}}{-0.8}
Since \frac{1}{3} and \frac{4}{3} have the same denominator, add them by adding their numerators.
\frac{5}{3}-\frac{\left(-\frac{2}{5}\right)^{2}}{-0.8}
Add 1 and 4 to get 5.
\frac{5}{3}-\frac{\frac{4}{25}}{-0.8}
Calculate -\frac{2}{5} to the power of 2 and get \frac{4}{25}.
\frac{5}{3}-\frac{4}{25\left(-0.8\right)}
Express \frac{\frac{4}{25}}{-0.8} as a single fraction.
\frac{5}{3}-\frac{4}{-20}
Multiply 25 and -0.8 to get -20.
\frac{5}{3}-\left(-\frac{1}{5}\right)
Reduce the fraction \frac{4}{-20} to lowest terms by extracting and canceling out 4.
\frac{5}{3}+\frac{1}{5}
The opposite of -\frac{1}{5} is \frac{1}{5}.
\frac{25}{15}+\frac{3}{15}
Least common multiple of 3 and 5 is 15. Convert \frac{5}{3} and \frac{1}{5} to fractions with denominator 15.
\frac{25+3}{15}
Since \frac{25}{15} and \frac{3}{15} have the same denominator, add them by adding their numerators.
\frac{28}{15}
Add 25 and 3 to get 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}