Solve for x
x=290
Graph
Share
Copied to clipboard
\frac{1}{3}\left(\frac{1}{4}\times \frac{1}{5}x+\frac{1}{4}\left(-2\right)-2\right)-2-2=0
Use the distributive property to multiply \frac{1}{4} by \frac{1}{5}x-2.
\frac{1}{3}\left(\frac{1\times 1}{4\times 5}x+\frac{1}{4}\left(-2\right)-2\right)-2-2=0
Multiply \frac{1}{4} times \frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}\left(\frac{1}{20}x+\frac{1}{4}\left(-2\right)-2\right)-2-2=0
Do the multiplications in the fraction \frac{1\times 1}{4\times 5}.
\frac{1}{3}\left(\frac{1}{20}x+\frac{-2}{4}-2\right)-2-2=0
Multiply \frac{1}{4} and -2 to get \frac{-2}{4}.
\frac{1}{3}\left(\frac{1}{20}x-\frac{1}{2}-2\right)-2-2=0
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{3}\left(\frac{1}{20}x-\frac{1}{2}-\frac{4}{2}\right)-2-2=0
Convert 2 to fraction \frac{4}{2}.
\frac{1}{3}\left(\frac{1}{20}x+\frac{-1-4}{2}\right)-2-2=0
Since -\frac{1}{2} and \frac{4}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}\left(\frac{1}{20}x-\frac{5}{2}\right)-2-2=0
Subtract 4 from -1 to get -5.
\frac{1}{3}\times \frac{1}{20}x+\frac{1}{3}\left(-\frac{5}{2}\right)-2-2=0
Use the distributive property to multiply \frac{1}{3} by \frac{1}{20}x-\frac{5}{2}.
\frac{1\times 1}{3\times 20}x+\frac{1}{3}\left(-\frac{5}{2}\right)-2-2=0
Multiply \frac{1}{3} times \frac{1}{20} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{60}x+\frac{1}{3}\left(-\frac{5}{2}\right)-2-2=0
Do the multiplications in the fraction \frac{1\times 1}{3\times 20}.
\frac{1}{60}x+\frac{1\left(-5\right)}{3\times 2}-2-2=0
Multiply \frac{1}{3} times -\frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{60}x+\frac{-5}{6}-2-2=0
Do the multiplications in the fraction \frac{1\left(-5\right)}{3\times 2}.
\frac{1}{60}x-\frac{5}{6}-2-2=0
Fraction \frac{-5}{6} can be rewritten as -\frac{5}{6} by extracting the negative sign.
\frac{1}{60}x-\frac{5}{6}-\frac{12}{6}-2=0
Convert 2 to fraction \frac{12}{6}.
\frac{1}{60}x+\frac{-5-12}{6}-2=0
Since -\frac{5}{6} and \frac{12}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{60}x-\frac{17}{6}-2=0
Subtract 12 from -5 to get -17.
\frac{1}{60}x-\frac{17}{6}-\frac{12}{6}=0
Convert 2 to fraction \frac{12}{6}.
\frac{1}{60}x+\frac{-17-12}{6}=0
Since -\frac{17}{6} and \frac{12}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{60}x-\frac{29}{6}=0
Subtract 12 from -17 to get -29.
\frac{1}{60}x=\frac{29}{6}
Add \frac{29}{6} to both sides. Anything plus zero gives itself.
x=\frac{29}{6}\times 60
Multiply both sides by 60, the reciprocal of \frac{1}{60}.
x=\frac{29\times 60}{6}
Express \frac{29}{6}\times 60 as a single fraction.
x=\frac{1740}{6}
Multiply 29 and 60 to get 1740.
x=290
Divide 1740 by 6 to get 290.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}