Evaluate
\frac{59}{4}=14.75
Factor
\frac{59}{2 ^ {2}} = 14\frac{3}{4} = 14.75
Share
Copied to clipboard
\frac{\frac{\frac{\frac{12+3}{4}}{\frac{3}{4}-1}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Multiply 3 and 4 to get 12.
\frac{\frac{\frac{\frac{15}{4}}{\frac{3}{4}-1}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Add 12 and 3 to get 15.
\frac{\frac{\frac{\frac{15}{4}}{\frac{3}{4}-\frac{4}{4}}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Convert 1 to fraction \frac{4}{4}.
\frac{\frac{\frac{\frac{15}{4}}{\frac{3-4}{4}}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Since \frac{3}{4} and \frac{4}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\frac{\frac{15}{4}}{-\frac{1}{4}}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Subtract 4 from 3 to get -1.
\frac{\frac{\frac{15}{4}\left(-4\right)+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Divide \frac{15}{4} by -\frac{1}{4} by multiplying \frac{15}{4} by the reciprocal of -\frac{1}{4}.
\frac{\frac{\frac{15\left(-4\right)}{4}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Express \frac{15}{4}\left(-4\right) as a single fraction.
\frac{\frac{\frac{-60}{4}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Multiply 15 and -4 to get -60.
\frac{\frac{-15+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Divide -60 by 4 to get -15.
\frac{\frac{-15+\left(1-0\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Multiply 0 and 6 to get 0.
\frac{\frac{-15+1\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Subtract 0 from 1 to get 1.
\frac{\frac{-15+1\times \frac{25}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Calculate -\frac{5}{2} to the power of 2 and get \frac{25}{4}.
\frac{\frac{-15+\frac{25}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Multiply 1 and \frac{25}{4} to get \frac{25}{4}.
\frac{\frac{-\frac{60}{4}+\frac{25}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Convert -15 to fraction -\frac{60}{4}.
\frac{\frac{\frac{-60+25}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Since -\frac{60}{4} and \frac{25}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{-\frac{35}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Add -60 and 25 to get -35.
\frac{-\frac{35}{4}\left(-\frac{3}{5}\right)-20}{\left(-1\right)^{39}}
Divide -\frac{35}{4} by -\frac{5}{3} by multiplying -\frac{35}{4} by the reciprocal of -\frac{5}{3}.
\frac{\frac{-35\left(-3\right)}{4\times 5}-20}{\left(-1\right)^{39}}
Multiply -\frac{35}{4} times -\frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{105}{20}-20}{\left(-1\right)^{39}}
Do the multiplications in the fraction \frac{-35\left(-3\right)}{4\times 5}.
\frac{\frac{21}{4}-20}{\left(-1\right)^{39}}
Reduce the fraction \frac{105}{20} to lowest terms by extracting and canceling out 5.
\frac{\frac{21}{4}-\frac{80}{4}}{\left(-1\right)^{39}}
Convert 20 to fraction \frac{80}{4}.
\frac{\frac{21-80}{4}}{\left(-1\right)^{39}}
Since \frac{21}{4} and \frac{80}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{59}{4}}{\left(-1\right)^{39}}
Subtract 80 from 21 to get -59.
\frac{-\frac{59}{4}}{-1}
Calculate -1 to the power of 39 and get -1.
\frac{-59}{4\left(-1\right)}
Express \frac{-\frac{59}{4}}{-1} as a single fraction.
\frac{-59}{-4}
Multiply 4 and -1 to get -4.
\frac{59}{4}
Fraction \frac{-59}{-4} can be simplified to \frac{59}{4} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}