Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{\frac{\frac{\frac{12+3}{4}}{\frac{3}{4}-1}+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Multiply 3 and 4 to get 12.
\frac{\frac{\frac{\frac{15}{4}}{\frac{3}{4}-1}+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Add 12 and 3 to get 15.
\frac{\frac{\frac{\frac{15}{4}}{\frac{3}{4}-\frac{4}{4}}+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Convert 1 to fraction \frac{4}{4}.
\frac{\frac{\frac{\frac{15}{4}}{\frac{3-4}{4}}+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Since \frac{3}{4} and \frac{4}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\frac{\frac{15}{4}}{-\frac{1}{4}}+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Subtract 4 from 3 to get -1.
\frac{\frac{\frac{15}{4}\left(-4\right)+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Divide \frac{15}{4} by -\frac{1}{4} by multiplying \frac{15}{4} by the reciprocal of -\frac{1}{4}.
\frac{\frac{\frac{15\left(-4\right)}{4}+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Express \frac{15}{4}\left(-4\right) as a single fraction.
\frac{\frac{\frac{-60}{4}+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Multiply 15 and -4 to get -60.
\frac{\frac{-15+\left(1-0.6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Divide -60 by 4 to get -15.
\frac{\frac{-15+0.4\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Subtract 0.6 from 1 to get 0.4.
\frac{\frac{-15+0.4\times \frac{25}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Calculate -\frac{5}{2} to the power of 2 and get \frac{25}{4}.
\frac{\frac{-15+\frac{2}{5}\times \frac{25}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Convert decimal number 0.4 to fraction \frac{4}{10}. Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{-15+\frac{2\times 25}{5\times 4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Multiply \frac{2}{5} times \frac{25}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-15+\frac{50}{20}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Do the multiplications in the fraction \frac{2\times 25}{5\times 4}.
\frac{\frac{-15+\frac{5}{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Reduce the fraction \frac{50}{20} to lowest terms by extracting and canceling out 10.
\frac{\frac{-\frac{30}{2}+\frac{5}{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Convert -15 to fraction -\frac{30}{2}.
\frac{\frac{\frac{-30+5}{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Since -\frac{30}{2} and \frac{5}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{-\frac{25}{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Add -30 and 5 to get -25.
\frac{-\frac{25}{2}\left(-\frac{3}{5}\right)-20}{\left(-1\right)^{39}}
Divide -\frac{25}{2} by -\frac{5}{3} by multiplying -\frac{25}{2} by the reciprocal of -\frac{5}{3}.
\frac{\frac{-25\left(-3\right)}{2\times 5}-20}{\left(-1\right)^{39}}
Multiply -\frac{25}{2} times -\frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{75}{10}-20}{\left(-1\right)^{39}}
Do the multiplications in the fraction \frac{-25\left(-3\right)}{2\times 5}.
\frac{\frac{15}{2}-20}{\left(-1\right)^{39}}
Reduce the fraction \frac{75}{10} to lowest terms by extracting and canceling out 5.
\frac{\frac{15}{2}-\frac{40}{2}}{\left(-1\right)^{39}}
Convert 20 to fraction \frac{40}{2}.
\frac{\frac{15-40}{2}}{\left(-1\right)^{39}}
Since \frac{15}{2} and \frac{40}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{25}{2}}{\left(-1\right)^{39}}
Subtract 40 from 15 to get -25.
\frac{-\frac{25}{2}}{-1}
Calculate -1 to the power of 39 and get -1.
\frac{-25}{2\left(-1\right)}
Express \frac{-\frac{25}{2}}{-1} as a single fraction.
\frac{-25}{-2}
Multiply 2 and -1 to get -2.
\frac{25}{2}
Fraction \frac{-25}{-2} can be simplified to \frac{25}{2} by removing the negative sign from both the numerator and the denominator.